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Abstract

This paper describes COLLAGE, a planner that utilizes a variety of non-traditional methods

for plan construction within a partitioned or localized reasoning framework. The COLLAGE

domain representation and plan construction methods are based on the use of action-based

constraints. Not only do such constraints yield highly natural domain encodings, but they

are also associated with cost-effective plan construction methods. The additional use of

domain structure to partition the reasoning space and guide planning search likewise results

in more efficient planning. COLLAGENS unconventional approach to planning is motivated

by a specific target domain class: domains with parallel activities that require complex

forms of coordination. We describe the design decisions underlying the COLLAGE approach

in the context of a novel characterization of planning: a six-dimensional planning feature

space. We also discuss how this six-dimensional space can serve a larger role in the planning

community - as a framework for comparing planning techniques, enhancing communication

between researchers, elucidating ternfinological difficulties, and clarifying the relationship

between a domain's characteristics and its most suitable planning technique.



1 Introduction: What Is Planning?

Over the years, the primary focus of the planning community has been on specific planning

systems - STRIPS [7], NOAH [30], NONLIN [32], SIPE [35], OPLAN [4], SNLP [27] -
to name just a few. Each existing system was built, for the most part, upon the design

of its predecessors. As a consequence, most planning systems use the same underlying

representations and algorithms - those originally formulated in STRIPS. Indeed, STRIPS-

based representation and reasoning has become the defining attribute of AI planning as we

know it. Domains are described in terms of state predicates (that describe possible world

states) and action descriptions (that define actions in terms of their state-based preconditions

and effects). Problem instances are described in terms of initial and goal states. The task

of the planner is to come up with an ordered set of actions, all of whose executions are valid

with respect to action preconditions and effects, and are guaranteed to transform an initial

state into a goal state.

During the 1980's, planning researchers ventured beyond toy problems like the Blocks

YVorld into more realistic domains. They quickly bumped up against the inadequacies of

this traditional or "classical" formulation of planning. Some researchers developed new

methods and representational mechanisms that could be grafted onto a classical planning

base. These included techniques for dealing with uncertainty, parallelism, causality, hierarchy

and abstraction, metric temporal requirements, and reasoning about resources. Another

pivotal development of this period was the work of Chapman [2], who formalized classical

planning in terms of the modal truth criterion and found it to be NP-complete.

Other planning researchers, inspired by human methods for coping with the world, the

harsh requirements of robotic control, and Chapman's analysis, completely abandoned the

classical approach for more reactive forms of reasoning. For example, the human tendency

to represent knowledge as procedures motivates the architecture of systems like PRS [9] and

RAPS [8], which apply user-supplied procedures in reaction to the environment. Similarly,

case-based methods [10, 33] are inspired by the human ability to reuse and adapt previously

constructed plans in reaction to new problems. The need for quick and flexible response

in robotic domains led to architectures based on reactive control rules. Such rules can be

constructed either as a byproduct of extensive state-based search [5, 31] or via compilation

of user-supplied specifications [11].

In our view, these forays into reactive reasoning served another, perhaps more significant,

role in the planning field: they broadened our view of what constitutes "planning." A planner

is a system that utilizes any suitable method for constructing a plan of action. Ideally, one

should analyze a particular domain or domain class and determine what planning methods

are most suitable for it, from the standpoints of representational ease and plan-construction

efficacy.



The most recent work in planning is largely motivated by a desire to better understand

this relationship between problem and method. It has emphasized the development of more

theoretically well-defined planning frameworks and the use of careful empirical testing. Ironi-

cally, however, most of this work has focussed on classical planning (with particular emphasis

on SNLP [27]) in rather limited domains. Though the goals and methods of this recent work

are laudable, it is unfortunate that these efforts do not examine many of the newer planning

methods and ideas - or even some of the more traditional ones (e.g., the use of hierarchical

task networks). If analytical and experimental studies are to provide results with utility to

real-world domains, they must incorporate newer planning methods as well.

One way to begin a broader form of comparative analysis within the planning community

is to organize newer methods and ideas into dimensions of the planning process. Each

dimension defines a particular aspect of planning, and within each dimension is a set of

possible approaches or issues. A specific planner embodies a set of choices made within each

planning dimension. The field of "planning" can be defined broadly, yet concretely, as the

cross product of these dimensions. If well structured, this kind of categorization can serve

as a framework for communication between planning researchers, elucidation of planning

terminology, and exploration of different methods for a variety of domains.

Section 2 proposes one such categorization, composed of six dimensions: (1) domain and

problem representation; (2) plan representation," (3) plan construction method: (4) control

method; (5) time of plan construction; and (6) relationship between planner and environment.

We have found this categorization to be extremely useful in understanding the planning field

as a whole and the role of our own non-traditional planner, COLLAGE, in particular.

The rest of the paper describes COLLAGE. We begin in Section 3 by motivating the

design choices underlying COLLAGE in terms of the six dimensions. In Section 4 we describe

COLLAGE's overall planning approach and its domain and problem representation. This is

followed by a description of the COLLAGE plan representation in Section 5 and an in-depth

study of the COLLAGE plan construction methods in Sections 6 and 7. Section 8 then de-

scribes the localized search control method. It provides both analytical and empirical results

that assess the utility of the localized planning approach, including an empirical result that

contrasts SIPE's and COLLAGE'S performance in an oil:ice-building construction domain.

Section 8 also discusses the relationship between localization and abstraction. Finally, we

conclude in Section 9 with a discussion of current research with COLLAGE.
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2 Six Dimensions of Planning

This section describes each of the six planning dimensions in terms of a set of "choices" or

issues. While not exhaustive, each description includes a variety of techniques that have

been used by traditional and non-traditional planners.

° Domain and Problem Representation

This dimension defines how domain and problem information is represented. Among

the possibilities are: (1) classical state-based description in terms of state conditions

and STRIPS-based action descriptions; (2) action-based description, where domain

requirements are described in terms of "behavioral" constraints on the relationships

between actions; (3) procedures, defining action sequences that achieve specified goals

or effects; and (4) functional input/output requirements. This dimension must also

address a variety of semantic issues. For example, can effects depend on whether or

not actions occur in parallel? Are actions discrete or continuous? Is probabilistic

information or uncertainty about domain state or actions allowed? How does the

representation cope with the frame problem and other problems related to scope of

effect? Is domain information partitioned or modularized?

. Plan Representation

This dimension defines how plans are represented. Among the possibilities are partially

or totally ordered sets of actions, reactive control rules, procedures, code, or neural

nets. Other aspects of this dimension include the kinds of relations that can hold

between actions, the possible use of metric time-stamping information, the allowance

for varying "levels" of plan activity, the modularization of plans into plan fragments,

the embedding of constraint networks or other kinds of truth maintenance structures

over variables within the plan, and the integration of plan justification structures.

. Plan Construction Method

This dimension defines how plans are constructed. Possibilities include use of tradi-

tional algorithms based on the modal truth criterion, methods for combining user-

defined procedures or reusing previously generated plans, plan transformation or com-

pilation techniques, problem reduction, chronological projection, action decomposition

or goal reduction methods, temporal and causal reasoning over actions and/or states,

"CSP-style" constraint propagation on variable bindings, abduction, neural-net rein-

forcement, and domain-specific methods. Most systems utilize a single method, but

some planners allow for mixed methods.

. Control Method

This dimension defines how plan construction is controlled - i.e., the method for con-

trolling the application of plan-construction techniques. Options include search-based,

reactive, blackboard-based, or decision-theoretic control, or combinations of these. In

some cases, the overall control-space may be partitioned according to various criteria



°

.

such as abstraction or localization. Some control schemes are flexible and context-

sensitive, while others are rigid.

Time of Plan Construction

This dimension deals with when plan construction methods are applied relative to plan

ezecution and is thus linked to control. The spectrum of possibilities range from pure

advance pre-planning to pure run-time reactive-planning. Intermediate points along

this spectrum include reactive systems that are guided by advance reasoning and pre-

planning systems that allow for some forms of reactive plan modification.

Relationship Between Planner and Environment

This dimension deals with planning autonomy - how is planning behavior affected by

the user and/or environment? In the past, most AI planners have been completely

autonomous. However, some recent planning systems allow for user-input into the

planning process. Others are able to learn or modify their methods for plan construc-

tion and control based on experience and interaction with the user and/or environment.

Traditional planning systems are quite easy to characterize in terms of the six dimensions.

For example, classical systems such as TWEAK [2] or SNLP utilize state-based domain and

problem representation and plan construction techniques based on the modal truth criterion.

Plans are partially ordered sets of actions and incorporate some limited forms of constraints

on variables. Control is search-based with a variety of possible search strategies. Planning

is done in advance of execution and is autonomous.

Motivated by the need to cope with more complex domains, the barebones classical

framework is extended in systems like NONLIN, SIPE, and OPLAN. Domain representation

incorporates the use of hierarchical task networks (i.e. schemas for goal or task reduction)

and in some cases, causal theories. Plans incorporate levels of hierarchy as well as certain

forms of plan justification structure. Plan construction is expanded to include the use of task

reduction and causal reasoning. The search space may be partitioned into abstraction levels.

Execution failures may be handled with limited forms of run-time plan modification based

on embedded justification information [12]. Finally, the user may be allowed to provide

heuristic search guidance.

The ways in which reactive planners diverge from classical planners is best understood

by examining the "control," _'time", and "autonomy" dimensions. Rather than utilizing an

autonomous, search-based, pre-planning approach, reactive systems form plans partially be-

fore execution, with the final form of a plan emerging at execution-time. A reactive control

mechanism is used to apply pre-constructed plan fragments in response to a dynamically

changing environment. Such a strategy is quite appropriate for domains that are highly

unpredictable and quickly changing. The various different forms of reactive planning that

have been proposed can be distinguished by examining their domain representation, plan

representation, and plan construction dimensions, as well as aspects of the autonomy di-

mension. For example, in systems like PRS [9], a highly procedural domain representation

is utilized and procedures are supplied by the user rather than constructed by the system



The REX/GAPPS approach usesa plan construction method akin to code compilation to
generatereactive codefragments. "Universal" planning [31] and systemssuchas ERE [5]
perform advancereasoning,searchinga traditionally-based action/state space,the fruits of
which are distilled into reactive rules. Case-basedmethods [10, 33] sharemuch in common
with these reactive frameworks in that plan fragments are constructed and later reused.
Howeverthey differ in the time and control dimensions- reusemay be performed during
pre-planning searchrather than strictly in reaction to a dynamic environment.

Many commonterminological confusionswithin the classicalplanning community canbe
elucidatedby the six-dimensionalplanningview. For example,considerthe term "nonlinear."

From a plan-representation view, nonlinearity simply means that a plan is a partial rather

than a total ordering of actions. If a domain requires parallel forms of activity, the plan

representation must be "nonlinear." From the standpoint of plan construction, however,

"nonlinearity" represents the methodological choice of least-commitment; i.e., rather than

choosing a particular total ordering, the plan construction method defers that choice by

using a partial-ordering.

As another illustration, consider the common confusion surrounding the terms "hier-

archy" and "abstraction." The kind of "action-based" hierarchy used by hierarchical task

network (HTN) planners denotes a form of task or action decomposition that is explicit in the

domain and plan representation and that requires explicit methods during plan construction.

In contrast, "state-based" abstractions or hierarchies can be used in planners without HTN

capabilities and can be viewed as a mix of domain representation and control information.

The domain representation is partitioned into levels, each of which incorporates increasing

amounts of state-based detail. Planning control is guided by this information; the search

space is partitioned into levels, each associated with the state conditions "visible" at that

level.

Of course, domain characteristics should provide the ultimate motivation for the choices

made in the design of a planner. As new domains emerge, new planning techniques will

emerge as well. Consider some of the newest methods that have been proposed - those

based on decision theory [34] or neural nets [26]. The six dimensions provide a framework

for making planner design choices, and hopefully, for understanding the various tradeoffs

between choices. For example, if domain actions have uncertain outcomes, then some form

of probabilistic reasoning about actions and their effects should be incorporated. If action

outcomes are fairly certain, incorporating such representation and reasoning methods may

be a waste of time. Similarly, domains that are fairly stable and require intricate forms of

coordination usually require advanced reasoning through a search space; reactive planning

would quickly lead to an impasse. On the other hand, extensive search is a waste of time if

a domain is changing as you search.



3 Motivation Behind the COLLAGE Planning Approach

COLLAGE' [24] is a descendant of the GEMPLAN planner [18, 19, 20, 21]. The design of

both systems was motivated by a particular class of target domains: those involving parallel

activities that require complex forms of coordination. Most logistical planning domains lie

within this class. Indeed, a classic logistical domain, building construction, has been the

focus of much of our work. Throughout this paper we will be using a COLLAGE office-

building construction domain as the source of several illustrations. Since this same domain

was the focus of a study utilizing SIPE [13], it provides an interesting framework in which

to contrast our approach with more traditional approaches to planning.

Another logistical domain that has motivated our research is the planning of data selection

and data preparation activities performed by Earth scientists. This application is described

in more detail elsewhere [23]. It is a good example of a "softbot" domain [6] - i.e., planned

actions are executed in the framework of a computer system rather than in the real-world or

by a robot. In the data analysis domain, the task of the planner is to select data sets, data

transformation algorithms, and execution platforms in a way that meets scientific goals.

We begin our description of COLLAGE with a high-level outline of the COLLAGE archi-

tecture, cast in the framework of the six planning dimensions. Within each dimension, we

describe the design decisions underlying this architecture, as motivated by the requirements

of our target domains. The rest of the paper fills out this description in more detail.

3.1 Domain and Problem Representation

Use o/action-based constraints, localized into "scopes o/applicability" called regions.

Because our focus has been on large domains that require complex forms of coordination,

ease of representation and planning efficiency have been driving forces in the design of

COLLAGE. We have found that the requirements of domains in this class can be most clearly

described in terms of direct relationships between actions rather than in terms of relationships

between actions and states. For example, it is has been more natural to use descriptions of

the form "A must go before B" than those of form "B has precondition p and A provides

condition p."

In COLLAGE, all domain and problem requirements are defined in terms of action de-

scriptions and constraints. Action descriptions are used to describe the kinds of actions that

can be instantiated in a plan. Each description simply provides an action name and a set

of parameter types. Constraints are then used to describe the requirements that must be

satisfied by the actions in a plan. Each constraint must be an instance of a constraint form

in the COLLAGE constraint library.

1COordinated Localized aLgorithms for Actioll Generation and Execution.
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In principle, a COLLAGE constraint form can embody any kind of requirement. However,

all of the current COLLAGE constraint forms are action-based. That is, they describe domain

requirements in terms of required relationships between actions and action parameters. We

have found that methods for satisfying action-based constraints are, in general, more efficient

than algorithms based on the modal truth criterion. In a sense, we have chosen a particular

domain and problem representation language that, while general purpose, is more attuned to

the requirements of our target domain class. The distinction between action-based domain

description and state-based description is discussed at length in Section 7. It is probably the

central difference between COLLAGE and traditional planners.

Another important facet of COLLAGE's unorthodox representation is the use of local-

ization. We have found that our target domains, though large, have definite structure. In

particular, each domain constraint is usually relevant only to a subset of all possible domain

activities. This constraint scope or "locality" is usually based on a domain's natural features

such as its physical structure or functional processes. Each COLLAGE domain description

partitions its associated action descriptions and constraints into localities called regions. This

partitioning structure is used to semantically define the scope of constraints: each constraint

is assumed to be relevant to only the actions within its region and subregions. This semantic

information can be viewed as a frame rule. It also serves as a heuristic that partitions and

guides the planning process and, as a consequence, usually improves planning efficiency.

3.2 Plan Representation

Partially-ordered set of actions, partitioned into region plans; temporal, causal, simultane-

ity, and data-flow relationships between actions; use of action hierarchies; embedded "CSP"

binding requirements on plan variables; eventually, embedded justification structures.

The COLLAGE plan representation is fairly standard: a plan consists of a set of partially

ordered actions. Note that since we are targeting our planner to domains with parallelism,

the use of a partial order is essential - not just a form of least commitment. There are four

kinds of action relationships: temporal, causal, simultaneity, and data-flow. Actions may also

be decomposed into interrelated sets of subactions. In contrast to most HTN-based planners,

these high-level actions are retained within a plan, even after they are decomposed. This

enables reasoning at mixed levels of detail, which can be critical in logistical domains. Plans

may also be embedded with a network of binding constraints between plan-variables. In the

future, we also intend to incorporate justification structures that will enable flexible forms

of dynamic reasoning. Finally, plans are partitioned according to domain structure; a full

domain plan is composed of region plan fragments.



3.3 Plan Construction Method

Use of a specialized method for each constraint form.

As mentioned above, a COLLAGE domain is represented in terms of constraints, each

of which is an instantiation of a constraint form in the COLLAGE constraint library. Each

constraint form is associated with a "truth criterion" and constraint satisfaction methods

that operationalize this truth criterion. These constraint satisfaction methods construct a

plan by adding new actions, relations, and binding requirements into the plan. The COLLAGE

architecture is set up in a way that fosters the development of a diverse and easily extendible

constraint library - i.e., COLLAGE is intrinsically an integrated framework for mixed-method

plan construction. One advantage of using diversified constraints is that it enables flexibility

in the way domains can be encoded. Since each constraint is associated with its own plan

construction method, a domain's constraint encoding will affect the very nature and cost of

the planning process.

3.4 Control Method

Plan-space search, broken up into localized region search spaces; use of agendas to keep track

of outstanding plan construction operations.

The control regimen in COLLAGE is plan-space search; each search node is associated

with the plan constructed thus far in the planning process . All search is fully backtrackable

and the various options and orderings for plan construction steps are processed in a way

that ensures a high degree of completeness. Rather than utilizing a single "global" search

space, the COLLAGE search space is split up into multiple search spaces, one for each domain

region. Each of these regional search spaces is concerned with a subproblem of the overall

planning problem - i.e., satisfying a set of region constraints. However, since regions may

overlap, these subproblems need not be disjoint - they may be weakly, or even strongly,

interacting, depending on the localization structure. The use of localized search is related

to the technique of abstraction [22]. It provides many benefits - plan-construction cost

reduction, search-space size reduction, and heuristic control - but it also requires a more

complicated search mechanism to maintain overall plan consistency and correctness [21, 28].

3.5 Time of Plan Construction

Primarily pre-planning search; currently being extended to allow for 'flexi-time" constraint

activation, where constraints can be activated at any time - both before and during execution.

Since our domains of interest require complicated forms of coordination, they require

extensive pre-planning - complex coordination cannot usually be performed "on-the-fly."

Yet, such domains also require various kinds of run-time reasoning as well. In construction
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domains, unexpected changesthat affect resourceavailability (tools, contractors, money,
time) may necessitateplan modifications. In the data analysisdomain, unexpectedscientific
results may necessitatechangesto the data analysis plan. Someconstraints should not
evenbe considereduntil run-time. For this reason,weare currently extending COLLAGEto
allow constraint activation and satisfaction at any time relative to execution - what wecall
flezi-time constraint satisfaction.

3.6 Relationship Between Planner and Environment

Autonomous planning, but the user is provided with flexible ways of viewing the planning

process; eventually, allow/or user input into plan-construction and control.

In general, coordination-intensive domains have always required expert human planners.

This is certainly true of our focus domains; consider the general contractor at a building site

or scientists selecting and preparing their data. Enabling user input into the planning process

can thus provide important planning guidance. It can also help to ensure that an automated

planner is eventually accepted for real-world use. We have taken this issue seriously in the

design of COLLAGE. Our user interface, COLLIE, allows for sophisticated ways of viewing the

planning process. Eventually, we plan on integrating the user more fully into the planning

process itself.

4 Planning As Constraint Satisfaction

Central to COLLAGE is the view of planning as "constraint satisfaction." Each domain and

problem instance is represented in terms of action-type descriptions, which provide the kinds

of actions that can be instantiated, and a set of constraints that must be obeyed by the final

plan. Notice that we utilize the term "constraint," not in the confined sense used within the

CSP literature 2 [25], but in a much broader sense. In COLLAGE, a constraint is any kind

of property or "truth criterion" that the planner knows how to test and satisfy. COLLAGE

is associated with a broad and easily extendible library of constraint forms. All constraints
must be instances of these forms.

Each constraint form in the COLLAGE library is associated with a check method, a set of

fix methods, and a set of activators that "operationalize" the formal truth criterion for that

form. A check method tests whether a given plan satisfies a constraint. If it does not, the

check method returns a set of bugs or violation descriptors that describe the ways in which

the constraint is violated. Each of these bugs may then be tackled by a fix method, which

specifies how to augment the plan so that the constraint is satisfied (for that bug). A fix

may add new actions, relations between actions, or variable binding requirements into the

plan.

2A _CSP constraint" is a required relationship between variables that constrains variable assignments.
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The role of activators is to indicate whether a constraint is potentially violated. Each
activator describesa plan modification (usually, the addition of a certain type of action)
that could possibly violate the constraint. The activator set for a constraint form is based
on constraint-form semanticsand is designedto be conservative- i.e. eachconstraint should
be activated at least as often as it needs to be, though perhaps more so. These activators

are utilized in a "bottom-up" or "distributed" fashion, activating constraints immediately in

response to low-level plan modifications. For example, if a constraint C should be activated

by any action of type A, then C will be activated exactly when such an action instance is

added into the plan. A constraint is deactivated only after all its bugs have been fixed and

if it has not subsequently become reactivated since the last time it was checked.

COLLAGE utilizes the constraints making up a domain and problem description to drive

the planning process. Instead of backward- or forward-chaining on goals and conditions,

COLLAGE planning is more properly viewed as search through a constraint satisfaction search

space (see Figure 1). Each node in the space is associated with a plan constructed up to

that point in the search. Upon reaching a node, the planner chooses an activated constraint

and outstanding bug for that constraint. It then applies a fix method, yielding a new plan

at the next node in the search space. This fix may, as a side effect, activate a new set of

constraints.

PPlan-I Choose a constraint and bug

Apply? _plyfix

Plan-i O" • Plan-k

Figure 1: Constraint Satisfaction Search

Figure 1 is actually a simplification of the true COLLAGE search space. In the full space,

a node is associated with each choice or branching point in the reasoning process. Among

the kinds of choice nodes are the following:

• Selection of particular constraint from a set of activated constraints.

• Selection of a particular bug fi'om a set of constraint bugs that must be tackled.

• Selection of a particular fix method from a set of possible fix methods.

11



• Choices within a fix method. For example, a fix might choose to instantiate one from

a set of possible action types. Or it might choose one from a set of possible relations

or binding requirements to insert into the plan.

The COLLAGE search framework maintains a record of all outstanding search choices and

allows for fairly liberal orderings between these choices. Because of this flexibility and the

ability to backtrack through the choice space, the full planning space will, theoretically.

generate nearly all possible plans. However, there are various practical restrictions we have

placed on the completeness of this space. A complete description of the COLLAGE search

mechanism is provided in Section 8.

Classical planning may be seen as a specialized instance of this constraint-satisfaction

view of planning. In traditional frameworks, the only "constraint form" is the achievement of

a state-based condition, either at the end of the plan (a goal) or prior to a particular action in

the plan (a precondition). All "checks" and "fixes" are based on a single truth criterion - the

modal truth criterion - and utilize the usual methods of promotion, demotion, separation.

and achievement. All "bugs" are violations of the modal truth criterion - outstanding goals or

preconditions that must be established. Thus, rather than searching through a space focussed

on constraint-bug violations, a traditional planner chains on goals and preconditions. Finally,

the justification structures employed by traditional planners are just one kind of attached

plan structure that monitors constraint correctness.

4.1 Domain and Problem Description

In this section we describe the building blocks of the COLLAGE domain and problem rep-

resentation. Each domain description is composed of a set of region type definitions, which

collectively define and structure the action type descriptions and constraints of the domain,

a set of regions that instantiate these region types, and a domain knowledge base consisting

of domain-specific facts, functions, and type definitions. 3

Domain = < Region Types, Regions, DomainKnowledge >

Each region type definition is associated with a unique name and a set of action type de-

scriptions and constraints.

RegionType = < Name, ActionTypes, Constraint,_ >

An action type description simply provides a name and set of parameter types.

A ctionType = < Name, ParameterTypes >

3A COLLAGE problem instance is encoded in terms of constraints and facts. Since these constraints and
facts may be associated with Region Types or DomamKnowledge, for purposes of exposition we will take

Domain to define a full planning problem - both domain requirements and a problem instance.
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For example, our office building domain includes the following action type descriptions:

:action-type (build-column floor coord)

:action-type (build-beam floor coord coord)

Each build-column action instance represents the act of building a structural column on a

particular floor at a specified coordinate location. A build-beam action represents the act

of building a beam on a particular floor, between two specified coordinates. Both floor and

coord are domain-specific types defined in DomainKnowledge. A floor parameter may take

on values corresponding to building floors. A parameter of type coord may take on values

corresponding to x-y coordinates in a grid used for defining building locations.

Each constraint C is defined by the name of a constraint form and a set of constraint-

parameter values that instantiate that constraint form. C may also be associated with a

condition that limits the context in which it is applied, and a set of binding requirements to

be imposed upon variables used within C.

C = < ConstraintFormName, ConstraintFormParameters, Condition, BindingReq >

Notice that each constraint form is associated with its own set of expected constraint-

parameters. In Section 6 we provide a full description of each constraint form, including its

instantiation parameters, semantic truth criterion, and implementation in terms of checks,

fixes, and activators. For now, however, consider the following simple constraints:

:constraint

(tempbefore

:actions

:constraint

(tempbefore

:actions

((build-column ?f ?cl)

((build-column ?f ?c2)

(build-beam ?f ?cl 7c2)))

(build-beam ?f ?cl ?c2)))

Each tempbefore constraint instance provides two action-type descriptors, A1 and A2. The

constraint requires that each action of type A2 be preceded by some action of type A1.

Thus, the tempbefore constraints above require that each instance of a build-beam action

be preceded by build-column actions for each endpoint of the beam.

The portion of Domain actually used for plan generation is Regions - the region type

instances. There may be many instances of each region type; region instances may even be

generated dynamically during the planning process. Collectively, a domain's regions contain

all action type descriptions and all of the constraints that have to be obeyed by a plan.

The structural composition of Regions partitions this information in a way that defines the

locality or "scope of applicability" of each constraint (see Section 4.2).

Formally, a region R is defined by a unique region name, its region type, and a set of

subregions. A region definition may also include a set of region-generator descriptors that

are used for generating new subregions during planning. Generated regions are added into

Subregions dynamically.
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R = < RegionName, RT, Subregions, SubregionGenerators >

If Sub e Subregions, we say that subregion(R,Sub) holds. We also use a descendant relation

between regions, which is the transitive closure of subregion. The notation desc'(R) is used

to describe the set of regions composed of R and its descendants. Notice that the subregion

relation for each COLLAGE domain must form a DAG - no circular relationships between

regions can be formed, but regions can be shared by more than one parent. This DAG struc-

ture may evolve during planning, as regions are generated. As a simple example, consider the

following portion of a very localized version of our office building domain (some constraints

have been elided). Figure 2 depicts the subregion relation defined by the definitions below.

;; REGIONS

(defregion (column-beam-nexus column-beam-nexus-type)

:subregion all-columns

:subregion all-beams)

(defregion (all-columns all-columns-type)

:subregion (:generate (column-builder column-builder-type

:limit max-number-of-column-builders)))

(defregion (all-beams all-beams-type)

:subregion (:generate (beam-builder beam-builder-type

:limit max-number-of-beam-builders)))

;; KEGION TYPES

(def-region-type column-beam-nexus-type

:constraint

(tempbefore

:actions ((build-column ?f ?el)

:constraint

(tempbefore

:actions ((build-column ?f ?c2)

(build-beam ?f ?cl ?c2)))

(build-beam ?f ?cl 7c2))))

(def-region-type all-columns-type ...)

(def-region-type all-beams-type ...)

(def-region-type column-builder-type

:action-type (build-column floor coord))

(def-region-type beam-builder-type

:action-type (build-beam floor coord coord))

This regional structure will apply the two tempbefore constraints to all build-beam and

build-column actions associated with generated beam-builder and column-builder re-

gions. These beam-builder and column-builder regions may be generated in response
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to construction requirements (e.g., requirements encoded as constraints associated with

an-beams or all-columas) and as such may be viewed as "resources" (see Section 7.5).

column-beam-nexus

/
all-columns

gene.rated / ..
regtons f ""

column-builder1 ....

\
all-beams

go.o

generated
regions

beam-builder1 ...

Figure 2: A Simple Region Structure

Finally, DomainKnowledge consists of domain-specific facts, functions, and type defini-

tions.

DomainKnowledge = < Facts, Functions, Types >

Types includes definitions for parameter types used in Domain such as coord and floor.

Facts is a set of propositions that describe domain-specific or problem-specific facts. For

example, in the data analysis domain, Facts will include information about the specific

characteristics of Earth projection systems and data-transformation algorithms. Functions

is a set of domain-specific functions. As we will discuss in Section 6, domain-specific facts and

functions can be used to conditionalize the application of domain constraints and to define

variable binding requirements. As a result, extensions or modifications of DomainKnowledge

(say, by scientist users or building contractors) can play an important role in determining

the actual course of the planning process.

4.2 Constraint Localization

Given a non-partitioned domain representation consisting of Action Types and Constraints,

the task of a planner can be simply defined:

Find a plan, Plan, containing instances of the action types in Action Types, all of

whose possible executions satisfy all constraints in. Constraints.

In a localized reasoning framework, the planning task is similar, but partitioned: 4

For each region R in Regions, find a plan, Plann, containing instances of Actions TypesD

for any D in desc'(R), all of whose possible executions satisfy all constraints in

ConstraintsR.

4We use the notation XR to denote information of type X associated with region R.
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Intuitively, COLLAGE may be viewed as a set of "mini-planners," each building the por-

tion of the overall plan associated with a particular region, and all linked together as dictated

by the subregion relationship between regions. COLLAGE creates a reasoning framework for

each region R consisting of a planning search tree, SearchTreen, and an agenda, AgendaR,

that controls how SearchTYeen is searched. SearchT"t'een is concerned with building a plan,

Plann, that satisfies Constraintsn. Plann may only include actions that are instances of types

associated with R or R's descendant regions. These actions form the application "scope" of

all constraints in Constraintn.

The details of the COLLAGE plan representation are provided in Section 5. Like the

search space, the overall plan is partitioned into region plan fragments. For instance, in

the example depicted in Figure 2, the plan for region column-beam-nexus will consist of

three plan fragments: the plan fragment associated directly with column-beam-nexus and

the two "subplans" associated with all-columns and all-bearas. These two subplans will

then include the plans for generated column-builder and beam-builder regions.

One consequence of plan partitioning is that region search trees may be jointly construct-

ing shared plan fragments. For example, if two regions R1 and R2 share a common subregion

S, Planm and Plann2 will share Plans. One of the tasks of the localized search algorithm is

to maintain overall plan consistency in the face of plan partitioning and distribution. This

task shares much in common with the task of building and maintaining a distributed, repli-

cated data base. Both tasks must determine criteria for information partitioning and assure

consistency maintenance.

As we have already indicated, the localization structure defined by the subregion relation

defines the semantic "scope of applicability" of regional constraints. Given a localization,

COLLAGE will enforce each constraint with respect to its corresponding portion of the plan.

As a consequence, the fundamental criterion for choosing a particular domain localization

is constraint scope . A valid localization is one that applies each constraint to at least all

actions relevant to that constraint. Stated more formally, if constraint C is associated with

region R and ActionTypesc is the set of action types that comprise the desired scope of C,

then the following must be true:

Action Typesc C [JDd)Esc.(n) Action TypesD

Notice that a valid localization may allow constraints to be applied to actions outside their

"true" scope. Expanding the scope of applicability of a constraint may be motivated by

a desire to reduce regional sharing and consistency maintenance costs. For example, in

the scenario described above, if Plans forms the bulk of both Plannl and PlanR2, it may

actually be more cost-effective to collapse regions R1, R2, and S together to form a single

region consisting of all of their action types and constraints. Such a collapse will not cause

a lack of correctness - it will simply cause some constraints to be tested with respect to

irrelevant portions of tile plan.

In practice, the localization structure chosen for a domain will be strongly influenced

by domain-dependent features such as its physical structure, its functional components, its
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agentsor processes, its temporal compartments (e.g., each week of a schedule), or levels of

abstraction. In the office building domain, a mix of criteria is used: the scope of individual

constraints, the physical partitioning of the building into floors and rooms, the contractor

"agents," resources (e.g., tools), task types (e.g., flooring, ceiling preparation), and levels

of detail or abstraction. All of these kinds of partitioning are superimposed within a single

domain description.

Localization has several benefits and some pitfalls, many of which are discussed in greater

detail in Section 8.3. In general, a good localization must strike a balance between increased

partitioning (fine-tuning the applicability of constraints) and the increased consistency main-

tenance costs that result fl'om region-sharing and interaction [21]. One of our research goals

is to understand this tradeoff more deeply.

5 Plan Representation

Each COLLAGE region plan is a complex data structure consisting of several types of infor-

mation. In this section we describe how plans are partitioned according to region structure,

as well as the various kinds of information that can be found in a plan.

5.1 Plan Structure

Given a region R with subregions $1 .... Sn (which may be static or dynamically generated),

Plann will have the following form:

Plann = < LocalPlann, Plansl, ... Plans, >

A plan for a region R includes a local plan, LocaIPlann, consisting of information associated

directly with R, and plans for each of its subregions. Note that Plans1 .... Plans, will include

plans for each of their subregions. Thus, Plann can be viewed as a set of local plans, one for

R and one for each of R's descendant regions.

All plan information is stored in the local plan of some region. When a fix needs to add

new information into a plan (e.g., an action, relation, or binding requirement), COLLAGE

must decide which region's local plan to associate this information with. This decision

is critical, since where information is stored will determine which regions have access to

it. When reasoning within the framework of region R, COLLAGE will store any piece of

plan information within the local plan of the "lowest" or "smallest" region (or, in some

cases, regions) within R that can contain the information. This strategy enables all plan

information to be visible to all relevant regions. One corollary of this strategy is that each

action instance is stored in the local plan of the region that contains that action's type

definition.
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As an example, consider the localization depicted in Figure 3, consisting of five regions

R1 .... R5. Suppose that a fix method associated with a constraint in R1 needs to add

four new actions (a, b, c, d) and three new temporal relations ((a => b), (b ,,> ¢),

(c => d)) into Planm. Since actions a and b are instances of action types in region R4,

they are associated with LocalPlann4. Similarly, c is associated with LocalPlanns and d is

associated with LocaIPlanm. Given this localization structure, the relation (a => b) will

also be associated with LocalPlann4. However, since R2 is the nearest common ancestor

of R4 and R5, (b --> c) will be associated with LocalPlann2. Similarly, (c --'> d) will be

associated with LocalPlanm.

[!1 Add relation: (c => d)

/\
Add relation: (b => c) [12

Action Types: A,B
[14

Add actions: a, b
Add relation: (a => b)

Action Types: DR3

Add actions :d

Action Types: C
R5

Add actions: c

Figure 3: Plan Structure

This strategy of storing plan information as "locally" as possible also increases the need

for consistency maintenance. For example, if R4 is a descendant of some other region R6

not depicted in the figure, the plan information stored in LocalPlanR4 will also be part of

PlanR6. Thus, reasoning within R1 may result in the addition of information to LocalPlann4

and, ultimately, that change will have to propagate to Plann6 and to any other plan that

contains LocaIPlann4. This process is described in further detail in Section 8.
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5.2 Plan Content

Each local plan in COLLAGE may contain several different kinds of information: actions,

relations between actions, and binding requirements on action parameters. This section

describes this plan content in more detail.

5.2.1 Actions

The most basic piece of plan information is an action instance. Each action is a unique

object consisting of a name and a set of typed parameter objects. A parameter object is

either simple or structured (i.e., composed of subsidiary parameter objects called slots). For

instance, the floor parameter type is a simple type; coord is a structured type composed

of x and y coordinate slots. Each simple parameter object must be either a constant value

or a variable object. Each variable object is associated with a set of possible values.

For example, consider an action instance (build-column 1 {2,2}). This action repre-

sents the act of building a colunm for floor 1 at coordinate {2,2}. Another action instance

might be (build-column F {1,2}). This represents the act of building a column at coor-

dinate {1,2}. However, the floor parameter variable object F may not yet be bound to a

distinct value.

COLLAGE actions may be atomic or nonatomic. Ontologically, atomic actions represent

discrete instants or points in time. A nonatomic action is composed of subactions, which

may be either atomic or nonatomic. Each nonatomic action must be associated with at least

one distinguished "first" subaction and at least one distinguished "last" subaction. These

"endpoints" can be used to establish interval-based relationships between nonatomic actions

[10].

5.2.2 Action Decomposition Information

When a nonatomic action is decomposed into subactions (via the application of a decom-

pose constraint - see Section 6), information about action/subaction relationships must be

recorded. Rather that removing a nonatomic action from a plan and replacing it with its

subactions (as is done by most HTN-based planners), COLLAGE retains all nonatomic ac-

tions within a plan and additionally stores information about the hierarchical relationship

between actions and their subactions. In particular, two types of information are stored:

1. Relations of form (subaction a sub).

2. Relations of form (firstsubaction a sub) and (lastsubaction a sub).

By retaining actions at all levels of detail within the plan, constraints can be applied to plans

that incorporate actions at mixed-levels of detail. For instance, in building construction do-

mains, high-level plumbing activities may be temporally constrained relative to low-level
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electrical activities. Often, action/subaction boundaries are used as criteria for abstraction-

based localization structures. The relationship between localization and abstraction is dis-

cussed in more detail in Section 8.4.

5.2.3 Relations between actions

Besides decomposition relations, there are four other types of relations that can exist between
actions: s

• Temporal Relations

The presence of a relation (al => a2) between two actions al and a2 indicates that

al must occur before a2. 6 The temporal relation is transitive and is also propagated

as a result of action decomposition. (A complete description of the temporal relations

implied by action decomposition is described in Section 6.)

COLLAGE maintains full, explicit temporal closure within each region plan and per-

forms this closure incrementally. Maintaining a temporally closed plan, while costly,

can greatly improve the efficiency of plan construction algorithms, reducing tempo-

ral inference costs to near constant-time look-up. Our experiehce with COLLAGE has

shown that the price for temporal closure maintenance is mitigated by the fact that

this closure is only performed on a regional basis rather than with respect to a full

"global" plan. These locally closed regional "islands" are similar to the reference in-

tervals described by Allen [1].

• Causal Relations

The relation (al _> a2) indicates that al causes or enables a2. In our ontology,

causality implies temporal precedence: (al _> a2) D (al => a2). This implicant is

explicitly stored in a COLLAGE plan. However the causal relation is not transitive. As

a consequence, the causal relation provides a convenient mechanism for representing

one-to-one relationships between actions.

For example, the act of opening a door may be viewed as enabling the act of walking

through the door: (open-door _> enter-room). Though many other open-door

actions may temporally precede a particular enter-room action, domain requirements

may be defined so as to ensure that only one open-door action actually enables each
enter-room action.

SFor the sake of clarity, we use infix notation throughout this paper for the temporal, causal, simultaneity,

and dataflow relations. However, in COLLAGE itself, these relations are stored using a more traditional prefix
form- e.g.,(before a b) ratherthan (a => b).

6Although our logicofactionsispoint-based,noticethat the firstand lastsubactionsofnonatomic actions

can be interrelatedby the temporal and simultaneityrelationsso as toemulate allofAllen'sintervalrelations

between actions[l,19].
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Simultaneity Relations

A relation (al _a2) indicates that al and a2 must occur at the same time in all

possible executions of a plan. Currently, only atomic actions can be related by the

simultaneity relation. However, two nonatomic actions could be viewed as "simulta-

neous" if their respective first and last subactions are simultaneous. Notice that any

two actions that are unrelated temporally can potentially occur simultaneously in some

execution of a plan. However, if they are related by _, they must occur simultaneously

in all executions, r

Data Flow Relations

The dataflow relation >> was recently incorporated into COLLAGE to facilitate de-

scription of certain kinds of behavior in the data analysis domain. Dataflow implies

temporal flow: (al >> a2) D (al => a2). It also implies a relationship between

specific parameters of al and a2 - those of type pipe. A pipe parameter represents

a data flow "pipe." It is a structured parameter object consisting of pipe identifier,

input value, and output value slots. If (al >> a2) holds and al and a2 have pipe

parameters with the same pipe identifier, COLLAGE will insure that the pipe output

value associated with al is the same as the pipe input value associated with a2.

5.2.4 Binding requirements on action parameters

The data flow relation represents one specialized way of imposing a constrained relationship

between action parameters. COLLAGE also allows "CSP-style" binding requirements between

action parameters to be embedded within a plan. These binding requirements may be

imposed either due to the explicit binding requirements associated with a constraint or as a

byproduct of a fix. For example, if the constraint

:constraint

(tempbefore

:actions ((build-column ?f ?cl) (build-beam ?f ?cl ?c2)))

is applied to a plan containing the two action instances

(build-column F {i,I})

(build-beam 1 {I,I} {1,2})

and floor parameter variable F is unbound, the constraint fix method may add a temporal

relation between the two actions as well as the binding requirement (= F 1).

7For example, in COLLAGE, the partition order defined by ((a => b),(a => c)) has three possible

executions: {a,b,c}, {a,c,b}, and {a,bc}. However, if we add the additional relation (b =c) into the
partial order, the last of these three executions is the only possible execution. A complete formal semantics of
action-based representation and plan execution is provided in [18, 19], which is based on a first-order temporal
logic of actions. This logic was originally formulated for specifying and verifying concurrent programs [171
and later provided the formal basis for both GEMPLAN and COLLAGE. However, in this paper, we use a

non-modal logic for describing the truth criteria of the COLLAGE constraint forms.
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Currently, all binding requirementsmust beunary or binary relations between elementary

binding objects. An elementary binding object is either:

• A constant.

• A constant-valued parameter object.

• A variable parameter object of some enumerable type.

Each binding requirement may be defined by a boolean-valued Lisp function, a boolean-

valued function defined in DoraainKnowledge, or by facts in DomainKnowledge. For ex-

ample, suppose that we have facts (hard-flooring wood), (hard-flooring vinyl), and

(hard-flooring tile), and a boolean-valued function (color-match color1 color2).

Further suppose that we have actions of type (lay-flooring floortype floorcolor) in

our plan. Using the hard-flooring facts, we could impose a unary binding requirement on

floor'type parameters. Using color-match, we could require that if two rooms abut, their

two floorcolor parameters must be related by color-match.

Note that, like all plan information, binding requirements are stored within local plans.

The binding requirements for each region plan are grouped together in a network, much in

the style of CSP-networks [25]. However, rather than using a single network for the entire

plan, a set of sub-nets are formed, each consisting of binding requirements imposed on the

action parameters within a particular region. The consistency of the entire "global" network

is maintained much the same way as overall plan consistency is maintained, and is described

further in Section 8.

6 Plan Construction Methods

6.1 Constraint Application Semantics

We begin our description of the COLLAGE constraint forms by describing the overall se-

mantics of constraint activation and the application of checks and fixes. COLLAGE takes

the ConstraintFormNarae and ConstraintFormParameters for each constraint C and yields

a check method Checkc, fix methods Fizlc ... FizNc, and activators Activatorsc that op-
erationalize the semantic truth criterion for C. Each C is also associated with an initial

activation setting InitiaIActivationSettingc, which has value ON or OFF, indicating whether

C is considered to be active or inactive when planning begins.

As discussed in Section 4.1, each constraint C may also be associated with a condition,

Condition(:, and a set of binding requirements, BindingReqc. A constraint C need be satisfied

only if Conditionc is satisfied by the plan. BindingReqc imposes further requirements on the

bindings of action parameters referenced within C. The treatment of binding requirements,

constraint conditions, and the relationship between conditions and constraint activation

are discussed at length in Section 6.3. In the following discussion, we assume that both
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Conditionc and BindingReqc are empty - i.e. Conditionc is assumed to be satisfied and

there are no additional binding requirements.

A check method takes a plan as input and returns a set of bug descriptors for that

constraint. If Checkc(Plan) returns an empty set of bugs, we know that C is satisfied by

Plan; i.e., Plan _ TruthCriterionc. Each bug descriptor describes a particular way in which

C is violated by Plan. A fix method takes a plan and a bug descriptor as input and, if

successfully executed, returns a newly "fixed" plan.

A side-effect of executing some FixKc may be the activation of other constraints, includ-

ing, possibly, C itself. This is because the new actions, relations, and binding information

added into a plan by FizKc may potentially violate the truth criteria of those constraints,

introducing new bugs. The activators for each constraint C are designed to be conservative.

If constraint C is violated by some plan modification, C will be activated by some activator

in Activatorsc. However, some activators may be overly conservative - they may occasion-

ally activate C unnecessarily. The maintenance of this constraint activation information is
discussed in detail in Section 8.

Given our definition of constraint check, fix, and activation semantics, we have the fol-

lowing observation:

Given constraint C and plan Piano, if the following holds:

• {Bugl...Bug,,, } _ Checkc (Piano)

• A sequence of fix methods are successfully applied, one for each bug in the set:

(V i: 1..m) El2 c e {Fizlc...FixNc}

Plan1 ,-- FixXc (Piano, Bug1 )

Plan., _ Fiz_c (Plar__l ,Bug,,,)

• C is not activated by any Fiz_c

THEN Checkc (Plar_) must return no bugs - i.e. Plan,_ _ C.

In Section 6.2 we provide an in-depth description of the current COLLAGE constraint

library. For each constraint form, we provide a truth criterion, an algorithmic description of

the constraint check and fix methods, the constraint activators, an initial activation setting,

and a brief discussion of constraint complexity. We also provide examples of constraint use.

First, however, we must discuss some issues relevant to our description of these constraint

forms.
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6.1.1 Action Descriptors

The various constraint parameters that are used to instantiate constraint forms are all com-

posed from action descriptors. In this paper, we also use action descriptors to describe the

truth criterion for each constraint form. An action descriptor is similar to an action-type

description. It provides a skeletal description that can be used to match against and retrieve

action instances in a plan. All COLLAGE plan information is stored and indexed in such

a way that facilitates quick matching with these action descriptors. Relation descriptors,

which are composed of a relation name and two action descriptors, can also be used to

quickly retrieve matching plan relations.

Each action descriptor A has the form:

A = < Name, ParameterDescriptors >

Name is the simple token name of an action type. Each parameter descriptor is either a

constant value or a variable descriptor ?v. An action instance necessarily matches an action

descriptor if they have the same name and if their corresponding parameter objects and

descriptors necessarily match. Similarly, an action possibly matches an action descriptor if

they have the same name and their corresponding parameter objects possibly match. Figure

4 depicts the conditions under which parameter objects and parameter descriptors possibly

or necessarily match.

Parameter
_Descriptor . ParameterDeecriptor

Paramete_r Constant k ?v Paramete_r Constant k ?v
Object Object

Constant c

Variable
Object V

c=k

k is a possible
value of V

c is a possible
binding of ?v

V and ?v
have the
same type

Constant c

Variable
Object V

c=k

V=k

c is a possible
binding of ?v

V and ?v
are required
to be equal

Possible-Match Table Necessary-Match Table

Figure 4: Matching Tables
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For example,an action instance (build-colunm 1 {0,1}) necessarilymatchesthe de-
scriptor (build-column 1 {?x ?y }) if 0 is a valid binding of ?x and 1 is a valid binding

of ?y. However, (build-column F {0,1}) only possibly matches this descriptor if F has not

yet been bound. It does not match if F has been bound to 2.

During constraint checking and fixing, parameter descriptors of form ?v used within C

will be matched with parameter objects associated with actions in a plan. Each application

of a check or fix algorithm is associated with a "current binding list" for these parameter

descriptors. This binding list is passed through the execution of a check, attached to outgoing

bugs, and later passed into the execution of a fix. The possible binding for each of these

descriptors is further constrained as it is matched with more parameter objects. Ultimately,

COLLAGE assures that all parameter objects matched against the same parameter descriptor

take on the same value. This mechanism is further described in Section 6.3.

6.1.2 Plan Inheritance

As described earlier, each region plan, Plann, is composed of a local plan for R and the

local plans of R's descendant regions. Rather than making a new copy of a complete R plan

each time that plan is modified, COLLAGE stores plan changes in an incremental fashion,

associating new plan changes with new local plans. Each local plan inherits plan content

from predecessor local plans. A full region plan inherits the content of all its local plans.

While this scheme saves on storage costs, the cost of looking up plan information is increased

by tile need to follow tile local plan inheritance chain.

For instance, suppose that region R has a subregion S and S has no subregions (see

Figure 5). Let us assume that a region R fix is given an input plan consisting of LocaIPlann,

and LocalPlansj and must add plan information to both local plans. First it will create

new local plans for both regions, LocalPlann,÷, and LocalPlans_÷_. These new plans will

be linked into the plan-inheritance structure so that LocaIPlann_+t inherits LocaIPlanR, and

LocaIPlans_+_ inherits LocaIPlans_. The fix will then add the new plan information into the

new local plans, yielding a new plan for R consisting of LocaIPlann,+_ and LocaIPlansj+, (as

well as a new plan for S consisting of LocalPlans_+_ ) and the local plans they inherit.

6.1.3 Choice Points

Each of the fix methods described in Section 6.2 may include choice points: points at which

choices must be made during the course of executing a fix. Like other higher level choices

in the search process, each internal fix choice is associated with a search node. When search

backtracks to a choice point, the other possible choices at that node can be pursued. This

backtracking will occur in response to failures of fix steps; in particular, if a fix step fails,

search will backtrack directly to the most recent choice node. All of the choices within a fix

will be fully explored (via backtracking) before an entire fix fails and is abandoned.
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Figure 5: Plan Inheritance

Note that many kinds of fix steps can fail - e.g., a plan-content query or the addition of a

relation (if that relation introduces temporal inconsistency into the plan). In our description

of the fix algorithms, most of these possible points of failure are left implicit rather than

explicitly noted.

6.1.4 Complexity Measures

The complexity measures provided for each constraint form described in Section 6.2 are

based on several assumptions. First, each assertion to the plan is assumed to Lake constant

time. Thus, we do not take into account the cost of incremental temporal closure and

binding constraint propagation that must be performed in response to new plan relations

and bindings. Though these "hidden" costs of closure maintenance and binding propagation

are not reflected in the constraint cost measures, a separate description of these mechanisms

and their complexity is provided in Section 6.4.

We also make a second assumption - that each plan look-up takes time ttook. COLLAGE

utilizes a discrimination tree to store plan information. This tree enables near constant-time

retrieval of matching actions and relations. However, this retrieval is not plan-relative - i.e.,

matching actions and relations for all local plans are returned. Thus, the cost ttook for a

particular plan depends on the cost of additionally checking the plan-inheritance chain for

that plan.
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6.2 Constraint Form Library

6.2.1 Action Constraint Form: Action({A1...An})

The most simple constraint form in COLLAGE is the action constraint. Action constraints are

used to ensure that particular actions are present in the plan. As such, they are usually used

to express problem-specific goals. Each action constraint provides a set of action descriptors

AI...An. The constraint is satisfied if, for each action descriptor Ai, there exists some action

in the plan that necessarily matches Ai. s

Truth Criterion: Y Ai e {A1...An} (3 ai:Ai)

Activators: none

Initial Activation Setting: ON

Check Algorithm

Check{Plan)

For each Ai in A1...An

If there is no action that necessarily matches Ai then

Add missing-action(Ai) to BugSet

Return BugSet

Fix Algorithm 9

Fix(missing-action (A i) ,Plan)

Create an action instance ai that necessarily matches Ai

Add ai into Plan'

Return Plan'

The complexity of the check algorithm is O(nttook), where n is the number of actions

that match the action descriptor set. The fix for each bug takes constant time. Notice that

since the initial activation setting is on for this constraint form, all action constraints are

SWe use the notation a:A to denote that action a necessarily matches descriptor A. The notation

a:{A1...An} denotes an action a that necessarily matches one of the descriptors {A1...An}. Also note
that quantification is assumed to be nested. For example, given (_ a:A)(5/b:B) expr(a,b), ifA and B contain
parameter descriptors in common, all parameter objects for action instance pairs (a,b) will necessarily marc h
as required.

9We use the notational convention that Plan' is the output plan for each fix. This Plan' is an augmen-

tation of the input plan Plan.
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activewhenplanning begins. Moreover,sincethe activator set is empty, anaction constraint
cannot be violated onceit is satisfied.

As stated above, action constraints axeusually used for expressinggoals. Often, they
are usedin concertwith decomposeconstraints; an action constraint might add a high-level
nonatomic action into the plan that is later decomposedinto lower-level subactions. For

example,

:constraint

(action
:actions ((do-flooring i)

(do-flooring 2)))

would result in the addition of high-level flooring actions for floors 1 and 2 that would later be

decomposed into lower-level flooring actions. However, there is actually a more elegant way to

instantiate problem-specific goals like these - via constraint conditionalization. For example,

the foliowing constraint will ensure that do-flooring actions for all floors above floor 0 are
added to the plan. Facts of form (floor 1), (floor 2), etc. in DomainKnowledge are

used to describe the floors and other features of a particular office building.

:constraint

(action

:condition ((fact (floor ?f))

(test (> ?f 0)))

:actions ((do-flooring ?f)))

The semantics of constraint conditionalization is described fully in Section 6.3.

6.2.2 Temporal/Causal Constraint Forms

This class of constraints consists of four binary constraint forms: tempbefore, tempafier,

enable, and cause. Each temporal/causal constraint provides two action type descriptors,

A and B. The constraint is satisfied if matching action instances of type A and B exist in

the plan which are temporally or causally related in a specified way. Below, we provide the

truth criteria for all four constraint forms, and the check and fix algorithms for tempbcfore.
The checks and fixes for the other three forms are similar.

Truth Criteria:

Tempbefore(A B): (Y b:B) (3 a:A) (a => b)

Tempafter(A B): (V a:A) (3 b:B) (a => b)

Enable(A B): (V b:B) (3 a:A) (a ,,,> b)

Cause(A B): (Y a:A) (3 b:B) (a _,> b)
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Activators:

Tempbefore(A B): {B}

Tempafter(A B): {A}

Enable(h B): {B}

Cause (A B): {A}

Initial Activation Setting: OFF

Tempbefore Check Algorithm

Check(Plan)

For each action b possibly matching B

If there is no relation (a => b), where a necessarily matches A, then

Add missing-predecessor(b) to BugSet

Return BugSet

Tempbefore Fix Algorithm 1: Using existing action

Fix(missing-predecessor(b), Plan)

Find action instances al...am that possibly match A
CHOICE POINT: Choose an ai from al...am

Add binding relations into Plan' so that ai necessarily matches A

Add (ai -> b) into Plan'

Return Plan'

Tempbefore Fix Algorithm 2: Create new action

Fix(missing-predecessor(b),Plan)

Create an action instance a that necessarily matches A

Add a and (a ---> b) into Plan'

Return Plan'

The complexity of the check algorithm is O(ntlook) where n is the number of actions

that match A or B. The first fix algorithm is O(ntlook), where n is the number of actions

that match A. The second fix algorithm is constant time. Notice that backtracking over

the choice point in the first fix algorithm can yield m possible solutions for each bug. Two

examples of tempbefore constraints were provided in Section 4.1.
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6.2.3 All-Matching Constraint Forms

This class of constraints is also composed of four constraint forms: all-matching-before,

all-matching-after, all-matching-enable, and all-matching-cause. They are used to ensure

that all actions that match a particular action descriptor bear a specified causal or temporal

relationship with respect to each action of another specified form. Unlike the temporal/causal
constraint forms, the fix methods for these constraint forms will not add new actions into

a plan - they will only create new relations between existing actions. The truth criteria

for all four constraint forms are provided below. The check and fixes for the all-matching-

tempbefore constraint are also provided; checks and fixes for the other three constraint forms
are similar.

Truth Criteria:

All-Matching-Before(A B): (V b:B) (V a:A) (a => b)

All-Matching-After(A B): (Y a:A) (Y b:B) (a ffi> b)

All-Matching-Enable(A B): 0/b:S) (V a:A) (a ,,,> b)

All-Matching-Cause(A B): (Y a:A) _ b:B) (a ,,,> b)

Activators: { A,B}

Initial Activation Setting: DFF

All-Matching-Before Check Algorithm

Check(Plan)

For each action b possibly matching B

For each action a necessarily matching A

If there is no relation (a => b) then

Add missing-relation(a b) to BugSet

Return BugSet

All-Matching-Before Fix Algorithm

Fiz(missing-relation(a b),Plan)

Add (a => b) into Plan'

Return Plan'

The complexity of the check algorithm is O(nrnttook), where n is the number of actions

matching B and m is the number of actions matching A. The fix algorithm is constant time.
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The all-matching constraint set is quite useful for expressing requirements in which a

particular action x does not require a corresponding activity in relation to it, but if corre-

sponding actions do exist, they must have some particular temporal or causal relationship

with respect to x. As an example, consider the following:

:constraint

(all-matching-before

:actions ((suspended-ceiling ?f) (finish-flooring ?f)))

In this case, if a suspended ceiling is built on a particular floor, it must be completed before

the flooring is finished. However, if a different type of ceiling were built, no temporal relation

would be enforced. As we will discuss in Section 7, such requirements are somewhat awkward

to express in a STRIPS-based framework. Also note that all-matching constraints are often

used in lieu of temporal/causal constraints. In particular, if other constraints are guaranteed

to add all required actions of type A and B into a plan, an all-matching constraint can be

used to order them rather than a temporal/causal constraint.

6.2.4 Decompose Constraint Form: decompose(A,Decomps)

The COLLAGE decompose constraint is analogous to task reduction in a traditional planner.

Each decompose constraint provides an action descriptor, A, and a set of decomposition

descriptors, Decomps. The constraint is satisfied if each action of type A is decomposed in

exactly one of the possible ways provided by the decomposition descriptors. Each decompo-

sition descriptor is composed of five parts:

A set of action descriptors, SubActions. These describe the subactions into which an

action of type A may be decomposed.

A set of action descriptors, FirstSubActions, where FirstSubActions C SubActions.

These describe the "first" subactions of the decomposition.

A set of action descriptors, LastSubActions, where LastSubActions C SubActions.

These describe the "last" subactions of the decomposition.

A set of relations, Relations, between action descriptors in SubActions. These describe

relations that must hold between the subactions in a decomposition.

An optional condition, Condition, that constrains the situations in which a decompo-

sition can be used. The form and use of Condition for a particular decomposition is

similar to general constraint conditionalization, described in Section 6.3.
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Truth Criterion: (Y a:A) _6d_e¢omp, decomposed(a,_)

where

decomposed(a,5) - Condition6 A _¢ S e SubActions6) (3 s:S)

[ (subaction a s) A

S e FirstSubActions6 D (firstsubaction a s) A

S e LastSubActions6 D (lastsubaction a s) ] A

(Y (R,S1,S2) e Relations6) (Y sI:S1) (Y s2:$2)

[ (s_bactio_ a sl) ^ (s_bactio_a se) ] _ (R sl s_)

The following is also required:

Internal Coherence:

(subaction a s)

(firstsubaction a s) V (3 first) [ (firstsubaction a first) A (first => s) ] A

(lastsubaction a s) v _ last) [ (lastsubaction a last) ^ (s => last) ]

External Coherence:

[ (b -->a) ^ (firstsubactio_a first) ] _ (b =>first) ^
[ (b -, first) ^ (first_bactio,_ a first) ] _ (b -> a) ^
[ (a => c) ^ (lastsubaction a last) ] D (last ;> c) A

[ (last => c) A (lastsubaction a last) ] _ (a "> c)

Internal coherence guarantees that the "first" and "last" subactions of a decomposition

make sense - i.e., that all other subactions occur between some first and last subaction. If

a decomposition is internally coherent, the first and last subactions of decomposition can

used to relate all the subactions in the decomposition to other actions in the plan - i.e. as

a framework for ensuring external coherence. In COLLAGE, internal coherence is required

of each decompose constraint description and external coherence is enforced as part of the

temporal closure mechanism.

Check Algorithm

Vheck(Pla=)

For each action a possibly matching A

If there is no relation (subaction a s) then

Add not-decomposed(a) to BugSet

Return BugSet
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Fix Algorithm

Fix(not-decomposed(a),Plan)

CHOICE POINT: Choose _ from Decomps

If Condition_ does not hold, FAIL.

For all S in SubActions6

Create an action s that necessarily matches S

Add (subaction a s) into Plan'

If S e FirstSubActions6

Add (firstsubaction a s) into Plan'

If S e LastSubActions6

Add (lastsubaction a s) into Plan'

For all (R $1 $2) in Relations_

For all sl such that (subaction a sl) and sl necessarily matches $1

For all s2 such that (subaction a s2) and s2 necessarily matches $2

Add (R sl s2) into Plan'
Return Plan'

A slight variant of the decompose constraint form, decompose-reuse, is also in the COL-

LAGE library. This constraint will reuse existing actions as part of a decomposition instead

of always creating new subactions. The fix algorithm is the same, except that we replace the

step:

Create an action s that necessarily matches S
with:

PossibleSubactions ,--- all actions that possibly match S

CHOICE POINT: Choose s from PossibleSubactions or create an action s matching S

Add binding relations into Plan' so that s necessarily matches S

The check method for a decompose or decompose-reuse constraint has complexity O(ttook).

Excluding the cost of testing a decomposition condition, the fix cost for each particular

decomposition is at worst O(rn2), where r is the number of relations and n is the number

of subactions. In practice, O(r + n) is more accurate.

Consider the following decomposition constraint from the office building domain, for fin-

ishing internal walls on a particular floor. In this case, there is only one valid decomposition

and no conditionalization. The constraint description uses a Lisp notation for labeling action

descriptors.
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:constraint

(decompose

:action ((do-partitioning ?f))

:decompositions

((:subactions (#1=(m-and-e-wall-services ?f)

#2=(drywall-studs ?f)

#3=(drywall ?f)

#4=(taping ?f)

#5=(painting ?f)

#6=(wall-fixtures ?f)

#7=(door-frames ?f)

#8=(doors ?f)

#9-(window-frames ?f)

#10=(glazing ?f))

:first-subactions (#i# #2# #9#)

:last-subactions (#6# #8# #I0#)

:relations ((#I# => #4#) (#2# => #3#)

(#2# => #7#) (#3# => #4#)

(#4# => #5#) (#5# => #6#)

(#7# => #s#) (#9# => #1o#)))))

6.2.5 Pattern Constraint Form: pattern(PatternActions,Pattern)

The pattern constraint form is a unique descriptive mechanism that has no true analog in

traditional planners. The check and fix algorithms for this constraint form are the most

expensive and complex in the current COLLAGE library, with costs ranging from quadratic

in the best case to exponential in the worst. Each pattern constraint provides a set of action

descriptors, PatternActions, and a regular expression, Pattern, expressed in a language we

define below. A pattern constraint is satisfied if all action instances that possibly match

action descriptors in PatternActions are totally ordered and this total order satisfies (is a

valid "parse" of) Pattern.

Truth Criterion: parses(ActionSet, Pattern)

where ActionSet = { a I (3 AePatternActions) possibly-matches(a,A) }

To clarify this constraint form a bit, we begin with an example from the Blocks World

(the current office building domain does not use this constraint form). An action of form

(pick ?x) represents the act of picking up a block ?x. An action of form (put ?y ?z)

represents the act of putting a block ?y onto a surface ?z. The "rebind" expression provides

information about which parameter descriptors can be rebound after each iteration around

a "loop" in the regular expression.
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:constraint

(pattern

:actions ((pick ?x)

:regexp (((pick ?x)

(put ?y ?z))

=> (put ?x ?y))*=> [rebind ?x ?y])

This pattern gathers up all pick and put actions in a plan and requires that they alternate

between pick and put, beginning with a pick action and ending with a put action. Moreover,

each action that picks up a block must be immediately followed (in the sequence) by an action

that puts that block down on some surface. For example, a valid string of pick and put

actions is:

(pick a) => (put a b) => (pick c) => (put c a)

An invalid sequence is:

(pick a) => (put c a) => (pick c) => (put a b)

The regular expression language for pattern constraints is defined by the following syntax:

<expr> :== <term> [ <term> <binary-rel> <expr>

<term> :== <factor> [ <factor> <unary-tel> <rebind>

<factor> :== ( <expr> ) I ( <expr> + <expr> ) I <action descriptor>

<binary-tel> :== => I _> [ >>

<unary-rel> :== *=> [ *_> I *>>

<rebind> :== [rebind <var-list>]

The use of *=>, *--,>, or *>> represents zero or more repetitions of a pattern fragment. The

final action in each sequence matching a repetition must be related to the first action in the

next matching sequence by the designated relation. The use of + indicates disjunction in the

pattern - i.e. the pattern is composed of one of two prescribed subpatterns. Thus, a pattern

of form

((pick ?x) + (put ?y ?z))*=>

would simply require all pick and put actions to be totally ordered. However, it would

impose no particular ordering on them nor any required relationships between their param-

eters.
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Activators: PatternActions

Initial Activation Setting: OFF

Check Algorithm

Check(Plan)

(_ *--- All actions that possibly match any member of PatternActions

If totally-ordered(a) and parses(a,Pattern) then BugSet ,--- { }

Else BugSet _-- enforce-pattern(a)

Return BugSet

Fix Algorithm

Fix (enforce-part e rn ((_), Plan)

Loop until a is empty

NextPossibleActions _ Set of actions that can occur first in the partial

ordering formed by a in Plan

NextPossibleActionDescriptors _ Set of action descriptors that can follow

in the current parse of Pattern that possibly match some action a in a.

CHOICE POINT: Choose A from NextPossibleActionDescriptors

and a corresponding a from NextPossibleActions

Add bindings into Plan' so that a and A necessarily match

Add the appropriate relation into Plan'

between a's predecessor in the parse and a
Remove a from a

If Pattern is not at a valid stopping point, FAIL
Return Plan'

This implementation of the pattern constraint has several important restrictions. First,
it only adds relations between existing actions in a plan - it does not create actions in order

to satisfy a patternJ ° Second, this fix generates solutions in a lazy fashion. It finds and

enforces one valid parse at a time and finds other solutions only if backtracking occurs within

the internal fix search space. Thus, this algorithm provides no avenues for finding a "best"

parse, except, perhaps, via the introduction of heuristics at the choice point.

The pattern check algorithm is actually a simplified version of the fix algorithm. After

gathering (_ -- an O(nttook) operation, where n is the size of a -- it checks to make sure

that those actions are totally ordered (we use a simple O(n 2) algorithm that assumes full

1°Otherwise, the number of possible solutions could be infinite - e.g., for patterns with loops.
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temporal closure) and can yield a valid parse. The parsing cost can range from O(nm),

where m is the disjunctive branching factor in the pattern parse, to O(rn n+l). In the fix

algorithm, the cost is driven up by the operation of finding the next possible "first" actions

in a. Each such operation costs at most O(n2), yielding a total cost ranging from O(n3m) to

O(n_m n+l). In practice, we have found pattern constraint costs to be closer to polynomial

rather than exponential.

6.3 Constraint Conditionalization and Binding Requirements

Two recent and powerful extensions to the COLLAGE constraint mechanism provide the

ability to conditionalize constraint application and to impose additional binding requirements

on the parameter descriptors used within a constraint. As discussed in Section 6.1.1, each

execution of a check or fix is associated with a "current binding list" for a constraint's

parameter descriptors. This binding list is passed through the execution of a check and

fix and is refined as parameter descriptors are matched against parameter objects. Given

Condition and BindingReq, the check and fix algorithms for a constraint are augmented in

a way that refines usage of this list:

Augmented Check Algorithm

Augmented- Check (Condition, Check (Plan))

Test Condition, building a list BL of all combinations of bindings for

parameter descriptors in Condition, so that Condition is satisfied.

For each bl in BL

Set bindings to bl.

Bugs _-- Check(Plan)

Add Bugs to BugSet

Return BugSet

Augmented Fix Algorithm

A ugmented-Fix (BindingReq, Fix (Bug, Plan))

Plan' _-- Fix(Bug, Plan)

Add bindings BindingReq into Plan'
Return Plan'

Normally, a check algorithm must consider all possible instantiations of a plan's parameter

objects. In the augmented constraint check algorithm, Check will be applied within each of

the binding contexts in which Condition is true. In essence, the augmented check algorithm
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takes a constraint and breaks it into severalsub-constraints,each pertaining to a specific
binding context. It applies thesesub-constraintsindividually, applying checksand fixes for
eachof them. The augmentedfix algorithm, after successfullycalling a particular Fiz, will

additionally impose all of the binding requirements in BindingReq.

COLLAGE requires Condition to be a list (interpreted as a conjunction) of boolean queries

of the following forms:

(action <action descriptor>)

(<relation> <action descriptorl>

<action descriptor2>)

(test <function>)

(fact <template>)

(make <parameter descriptor> <value>)

find a matching action

find a matching relation

tests a boolean function

queries the domain knowledge data base

creates a new parameter descriptor

Condition conjuncts are processed in linear order. As a result, the complexity of building

BL is affected by the ordering of the conjuncts as well as the nature of each conjunct and its

parameter descriptors. We require that all parameter descriptors supplied to boolean tests

have constant-valued bindings. A simple example will demonstrate the use of these features.

:constraint

(a11-matching-before

:condition ((action (lay-hall-flooring ?floor ?hall

?hallfloortype ?hallfloorcolor))

(test (> ?floor 0)))

:actions ((lay-room-flooring ?floor ?room

?roomfloortype ?roomfloorcolor)

(lay-ha11-flooring ?floor ?hall

?hallfloortype ?hallfloorcolor))

:binding ((color-match ?roomfloorcolor ?hallfloorcolor)))

If this all-matching-before constraint is activated and applied, the constraint condition will

first find all lay-hall-flooring actions in the plan and creating a binding list consisting

of all parameter descriptor binding combinations in which ?floor is greater than 0. The

all-matching-before check and fix will then be applied for each possible binding combi-

nation, additionally imposing the color-match binding requirement at the end of each fix.

Even if the color parameters of two particular actions are not yet bound, the color-match

binding requirement will be inserted into the plan, assuring that the colors match when they

are finally selected.

Finally, the relationship between a constraint's Condition and Activators bears some

further discussion. A constraint will only be activated if one of its activators are triggered.

Only after the constraint has been selected for application will Condition be tested. If

Condition is nonmonotonic, the following scenario is conceivable. First, a constraint C is

activated and selected, but its Condition doesn't hold, so C is'ignored. However, later, when

Condition becomes true, C is not reactivated and is thus never appropriately satisfied.
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In order to handle this type of situation, we have pursued the following solution: all

action descriptors utilized in a Condition are added to the activator list of C. The rationale

is that plan-related lookups are the most likely condition components to be non-monotonic.

Indeed, currently, all data base facts and functions in DomainKnowledge are static.

6.4 Temporal Closure and Binding Propagation

All of the constraint algorithms in COLLAGE assume that each region plan is temporally

closed and that binding requirements have been propagated. Of course, these operations have

nontrivial cost. In this section, we consider the mechanisms utilized for these operations.

Our motivations for using full temporal closure were twofold. In our experience with

GEMPLAN, we found that the system paid a large price for repeated temporal inferencing. For

example, each time a relation of form (a => b) is added into a plan, the planner must ensure

that b does not already precede a; otherwise, the result would be a temporally inconsistent

plan. This "precedes" relation, being the transitive closure of *>, is thus both expensive and

frequently called. When we designed COLLAGE, we decided to perform this closure explicitly

and incrementally. Now all precedence tests can be made in near constant time.

The second motivation for maintaining closure was to test the efficacy of localization as

a partitioning technique. Since plans are closed only on a regional basis, we conjectured that

the price of full closure would be mitigated. We also anticipate that localization will also

have a cost-reducing effect on binding propagation. Although we have yet not fully tested

the strategic consequences of this approach, our current results are promising.

The mechanism used for incremental temporal closure is fairly straightforward. There

are two types of closure: simple temporal closure and action decomposition closure (i.e.

enforcement of external coherence). To achieve simple temporal closure, each time a relation

(a => b) is added into a plan, COLLAGE finds all actions before a and all those that follow b.

It then forms a cross product between these two sets and adds a new temporal relation (if it

does not already exist) between each pair in the cross product. Action decomposition closure

enforces the rules of external coherence defined in Section 6.2.4 and is performed in response

to each assertion of a first subact ion or last subact ion relation, or any temporal relation

imposed on decomposition-related actions. Both operations are at most O(n2), where n is

the number of actions in a region plan. As a result, the total worst case cost is O(n4), since

at most O(n 2) relations can be added.

Each time a fix adds a new binding requirement into a region plan, COLLAGE propagates

that requirement with respect to the binding network in that plan. COLLAGE's binding

facility differs from typical CSP network implementations in several ways:

• The "overall" net is localized into a set of regional nets.

• Binding propagation is performed incrementally and allows for incremental addition of

new variables into the region net.
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• Only nodeand arc consistencyareperformedduring plan construction, usinga variant
of the NC and AC algorithms describedin [25]. Only at the end of the planning
process,when final consistencyis required, is path consistencyperformed.

Finally, notice that although COLLAGE maintains closure and propagates binding require-

ments incrementally within each PlanR, these closure and propagation operations must also

be performed when PlanR is integrated into the plans of R's ancestor regions. COLLAGE

utilizes the same incremental closure and propagation algorithms for these inter-region con-

sistency maintenance steps. The overall process is described in more detail in Section 8.

7 Action-Based vs. State-Based Planning

Our original interest in action-based representation and planning was rooted in the desire

to develop natural ways of handling coordination requirements. We have found that people

tend to think about activity coordination in terms of the actions being coordinated rather

than in terms of the states surrounding those actions. One explanation for this may be the

limited nature of human perceptive capabilities. If many activities are going on in parallel,

it is often easier for us to observe individual actions and their temporal sequencing than it

is to sense the highly dynamic, and in some cases, unpredictable and unobservable global
domain state.

Consider the patterns of behavior expressible with pattern constraints. This kind of

behavioral requirement is quite awkward to describe in terms of state, but is quite natural in

terms of actions. Another class of action-oriented requirements are resource usage policies.

For example, consider a "first-come-first-serve" policy. A plan may include "request" actions

that register a request to use a resource and "serve" actions that utilize the resource. The

"serve" actions must be ordered in the same order as their corresponding "request" actions.

In order to encode this policy in terms of state, a request-queue state object must be utilized

to represent the ordering of request actions. Formation of STRIPS-based action-descriptions

that utilize and manipulate such a queue can be quite difficult to construct correctly [18].

In contrast, it is easy to represent this requirement directly in terms of action orderings:

:conszraint

(tempbefore

:condizion ((tempbefore (request ?x) (request ?y)))

:actions ((serve ?x) (serve ?y)))

Another distinctive quality of action-based constraints is that they are compact and self-

contained; requirements are stated within a single constraint. In contrast, STRIPS-based

representations distribute the description of specific requirements among the preconditions

and effects of many STRIPS-based action descriptions. Such distributed descriptions are

often difficult to construct and maintain and are also more difficult to localize.

Besides being natural to use and compact, most of COLLAGE's action-based constraint

forms are associated with cost-efficient plan construction algorithms. Moreover, we have
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found that theseforms are quite adequatefor expressingthe kinds of requirementswehave
encounteredin real-world domains. For this reason,we have not incorporated an imple-
mentation of the modal-truth-criterion in COLLAGE. 11 The rest of this section attempts to

demonstrate the adequacy of the action-based approach by showing how various aspects of

state-based description can be encoded in an action-based framework. We use illustrations

from the office-building construction domain, some of which contrast COLLAGE constraints

with samplings from a SIPE specification for the same domain [13].

7.1 Goals

Instead of describing problem-specific goals in terms of desired goal states, COLLAGE utilizes
action constraints. For instance, SIPE uses goals like achieve(built-beam ?f ?cl ?c2) for

each beam in the office building. In contrast, the constraint below is used by COLLAGE to

generate high-level build-beam actions for each building "pod." Notice how the problem-

specific aspects of a "goal" can be separated from the more domain generic aspects (every

building must have beams - but each specific building has specific beam requirements) by

using problem-specific information in the domain knowledge data base to conditionalize the

application of action constraints. Thus, the constraint below can be used for all building

problem instances. Each pod is a cube-like building-block; each office building is specified

in terms of a set of pods. A pod is associated with a particular floor, has four corner points,

and is composed of four columns, four walls, four beams connecting the tops of the columns,

and a deck laid on top of the beams.

:constraint

(action

:condition ((fact (pod ?f 7cl ?c2 ?c3 ?c4)))

:actions ((build-beam ?f ?cl ?c2)

(build-beam ?f ?c3 ?c4)

(build-beam ?f 7cl 7c3)

(build-beam ?f 7c2 ?c4)))

7.2 Preconditions

In general, temporal/causal, all-matching, and pattern constraints are used in lieu of precon-

ditions. For example, consider a construction requirement that tile be laid before faucets are

installed. In a traditional representation, this requirement would be encoded by requiring
that a state condition laid-tile hold before each faucet-installation action. But since there

may be only one ways of achieving laid-tile and no foreseeable way of undoing or removing

it, it is easier to simply require that a temporal relationship hold between tile-laying and

faucet-installation actions. For example, we could use a constraint of form

11In contrast, the GEMPLAN planner did include a traditional planning mechanism as one of its constraint

forms - see Section 7.6.
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:constraint

(tempbefore

:actions ((lay-tile) (install-faucet)))

Given this formulation, we could also decompose lay-tile in one of several ways, thereby

achieving the same effect as allowing for many ways of achieving the state laid-tile. And if

there were a tile-removing action, strip-tile, we could still use an action-based constraint

to represent desired forms of behavior. For example, we might use a pattern constraint with
the following regular expression:

( (lay-tile => strip-tile)*=> => lay-tile => install-faucet )

This would allow tile to be repeatedly laid and stripped, but ultimately, a lay-tile ac-

tion must be the last tile-related action before install-faucet. In contrast, a state-based

representation would describe how each of these action types "add" or "delete" laid-tile.

All-matching constraints have a interesting and expressive capability for describing cer-

tain kinds of precondition requirements. Consider the following constraint that requires

embedded-slab utilities, if they are necessary, to be installed before the slab is poured:

:constraint

(all-matching-before

:actions ((install-embedded-slab-utilities ?s) (pour-slab ?s)))

In a SIPE implementation, this requirement must be expressed using negative preconditions:

• (pour-slab ?s) has the effect (slab ?s)

• (install-embedded-slab-utilities ?s) has the precondition (not (slab ?s))

The reason for this awkward use of negative preconditions is twofold:

"(1) The latter activity does not actually require the former activity as an im-

perative prerequisite... For example, a slab can be poured regardless of whether

embedded-slab utilities will be installed. This is different from other construc-

tion activities that have strong (hard) logical dependency, such as activities that

follow one another based on the gravity support principle.

(2) The former activity normally must precede the latter activity... For example,

to install embedded-slab utilities after the slab has been installed would require

extra tasks, e.g., destroying part of the slab..." [13]
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7.3 Task Decomposition

Instead of using hierarchical task networks to describe goal decomposition, COLLAGE utilizes

the decompose constraint to decompose high-level actions. Because decompositions can be

conditionalized, this constraint form can be quite powerful. The analogue in SIPE is the

use of operator plots.

One advantage of the decompose constraint over plots is that it retains high-level actions

in the plan rather than replacing them. As a result, constraints can be imposed on activities

at mixed levels of detail; atomic and nonatomic actions can be interrelated without restric-

tion. One difficulty encountered by the SIPE implementation effort for the office building

domain were interactions between "replacement-based" task decomposition and required lim-

itations on the use of parallel links. SIPE-2 was a direct outgrowth of modifications required

to deal with these difficulties. The following are excerpts from a study that analyzed these

interactions [13].

"SIPE did not produce the least-constrained, correct plan... One of the basic

restrictions was that given a set of parallel subplans, SIPE will only reorder them

by putting a whole subplan before or after the others. This restriction greatly

reduced the number of possible orderings, but it could not produce all possible

permutations of the actions in the subplans.., it proved too restrictive in real-life

construction problems...

...The representation of parallel links is complicated by the use of hierarchical

abstraction levels. There may be a number of parallel links.., at any one node

and copying these links down to more detailed levels raises a problem since some

nodes may be expanded to a more detailed level while other nodes may not be...

...Unfortunately, the new extension to SIPE to produce the most parallel plan

uncovered a new problem involving the introduction of redundant actions in

parallel subplans. Duplicating actions in parallel subplans intensifies significantly

when an action needs to be linked to several actions in parallel, such as the Office

Building project. Wilkins... modified his planner to overcome this problem."

Interestingly, rather than using preconditions, SIPE also used plots to describe temporal

requirements. This usage is similar in spirit to the use of action-based constraints to describe

preconditions. For example, consider the following operator for DO-BEAM: 12

l_Note that this domain encoding utilizes 3-dimensional coordinates to describe building locations, rather
than using a floor level with a two-dimensional coordinate.
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OPEKATOK: do-beam

AKGUMENTS: beaml, column1, column2,

Ioca_ionl, location2, location3, location4;

PUKPOSE: (done beaml)

PKECONDITION: (beam-location beam1 location1 location2),

(column-location column1 location3 locationl),

(column-location column2 location 4 location2);

PLOT:

PAKALLEL

BRANCH 1:

BKANCH 2:

END PAKALLEL

PKOCESS:

ACTION: build-beam;

AKGUMENTS: beaml;

EFFECTS: (done beaml);

END PLOT

END OPEKATOK

GOAL: (done column1);

GOAL: (done column2);

Of course, building columns is not truly a logical decomposition of building a beam - it

is really a precondition or temporal requirement. In COLLAGE, this requirement is explicitly

represented by the following temporal constraints:

:constraint

(tempbefore

:actions ((build-column ?f ?ci) (build-beam ?f ?cl 7c2)))

:constraint

(tempbefore

:actions ((build-column ?f ?c2) (build-beam ?f ?el ?c2)))

7.4 Filter Conditions

Depending on their underlying semantics, the use of "filter" conditions can be mimicked

in COLLAGE using constraint conditionalization. For example, suppose we have a filter

condition have-paint for each paint-wall action in a plan. Although we do not wish to

add paint-acquisition actions into the plan, the filter condition ensures that there is paint

available to successfully perform paint-gall. In COLLAGE, we could get the same effect by

conditionalizing the constraint that generates a paint-wall action. For example:

:constraint

(action

:condition ((test (have-paint)))

:actions ((paint-wall ?f ?cl ?c2)))
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7.5 Resources

Another important type of domain requirement -- one that is often associated with state-

based description - deals with resource usage. In particular, states are usually used to

represent the status of a resource at each point in time. In COLLAGE, resources are currently

handled in two ways: 13 (1) via binding requirements; and (2) by treating regions as resource

"objects" that constrain their own behavior.

If an action is associated with parameters that represent its required resources, binding

requirements on those parameters can be used to control resource choices. Similarly, if a

parameter is used to represent the metric time point at which an action occurs, binding

requirements can be used to constrain the times at which actions occur.

The use of regions as resource objects results in a rather interesting form of "object-

oriented" planning. Each "resource" region is associated with constraints (such as the "first-

come-first-served" constraint described earlier) that limits its action behavior and thus the

use of its associated resource. For example, consider the region structure discussed in Section

4 and depicted in Figure 2. We provide a fragment of that description below.

(defregion (all-columns all-columns-type)

:subregion (:generate (column-builder column-builder-type

:limit max-number-of-column-builders)))

(def-region-type column-builder-type

:action-type (build-column floor coord))

We can think of the column-builder regions as resources - i.e. the contractors who actually

build columns. If desired, we could associate each coluran-builder region with additional

constraints that limit individual column-builder activity. Since the all-columns region

generates new column-builder regions, it too could be associated with constraints (or, pos-

sibly, region-generation heuristics) that control the allocation of column builders to specific
tasks.

7.6 Representing STRIPS-Based Constraints

While we advocate using action-based formulation whenever possible, if state-based repre-

sentation is truly necessary to describe certain domain requirements, several options can be

pursued in a COLLAGE-like framework. One is to directly incorporate a "STRIPS" con-

straint form in the constraint library. This path was followed in the GEMPLAN planner [19]
and its implementation is described below. Another path would be to use a set of condition-

alized action-based constraints to effectively enumerate some of the possible "fixes" for the

modal truth criterion. For example, suppose that we have a condition p with "adder" A and

13In the future, we plan to extend COLLAGE to better handle more complex resource requirements - e.g.
those for handling continuous resources. Some form of "resource state" profile may have to be integrated.
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"deleter" D. If we wish p to be a precondition to action E, we could use constraints of the

following form (although this example is fairly simplistic, it illustrates the point): TM

;; Simple estabfishment
:constraint

(cause

:condition ((not (fact

:actions ((A) (E))))

(initial-state p))))

;; Promotion, Demotion

:constraint

(pattern

:condition ((action (D))

(cause (A) (E))

(not (before (A) (D))) (not (before (D) (A)))

(not (before (Z) (D))) (not (before (D) (Z))))

:actions ((A) (D) (E))

:regexp ((D => A _> E) + (A _> E => D)))

In contrast to the above action-based approach, a "STRIPS" constraint form was directly
integrated into the GEMPLAN constraint library. Each such constraint requires a state-based

condition to be true at some specified point in the plan - either at the end of the plan (a goal)

or prior to specific actions (preconditions). In order to represent state conditions, GEMPLAN

associates each region type with predicate definitions, in addition to action type descriptions
and constraints. Each predicate definition includes a list of conditionalized adder and deleter

descriptors. For example, in the GEMPLAN implementation of the blocks world, the following
definition of clear(B) is used:

(predicate-definition

:predicate (clear ?B)

:adders (((pick ?Y) (on 7Y ?B))

((put ?B 7Z) true))

:deleters (((put ?W ?B) true)

((pick ?B) true)))

Each adder or deleter descriptor provides: (1) an action descriptor which can add or delete a

literal of the specified type; and (2) the condition under which such an action adds or deletes

the literal. For example, an action of form (pick ?Y) adds (clear ?B) if (on ?Y ?B) is

necessarily true just before it occurs. An action of form (put ?B ?Z) always adds (clear

?B), and actions of form (put ?W ?B) or (pick ?B) always delete (clear ?B).

Notice how thisformulation makes conditionaleffectsquite easy to describe. Itiseasy,

for example, to statethat an action adds a particularliteralP in some contexts and another

14Note the use of negation-as-failure in the condition. Translating STRIPS-based requirements in this way

would probably require some extensions to the constraint library and the form of constraint conditions.
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literal Q in others. In addition, defining a predicate in one place (instead of "distributing" its

definition among the preconditions and effects of several STRIPS-based action descriptions)

makes it easier to localize. For instance, alternate definitions of "clear" might be used in

different regions.

Given a predicate definition for a precondition or goal, the check method for a STRIPS

constraint is essentially a test of the modal truth criterion. The fix methods correspond to

the plan construction operations in traditional planners: promotion, demotion, separation,

and establishment via the use of existing actions or via the addition of new actions.

8 Localized Search

COLLAGE controls the application of constraint checks and fixes by searching through a

set of search spaces, one for each region. Each search node in a region space is associated

with a region plan - i.e., the plan constructed thus far for that region. A node represents a

branching point in the plan-construction process that deals with one of the following kinds
of choices:

• Constraint choice: given a set of activated constraints, which constraint to apply next.

• Bug choice: given a set of constraint bugs, which bug to tackle next.

• Fix choice: given a constraint and bug, which fix method to apply.

• Internal fix choice: a choice point within a fix.

At a global level, COLLAGE must also decide which region's space it should be searching

at any given point in time. As a result, COLLAGE must aJso search a global space, where

each node is associated with the choice of which region to search. Figure 6 depicts these two

search spaces or "levels." Together they form one large search space; in essence, the global

space is composed of region space fragments. Each of these fragments is called a region
search incarnation.

Notice that each region R may have several incarnations within the global space. Each of

these search fragments "reincarnates" or continues search within R's space, further applying

R's constraints in the pursuit of constructing PlanR. Global search flows between region

incarnations depending on how fixes activate region constraints. Recall that a fix applied

within region R may activate constraints both within R and other regions in the domain.

All of these regions may then become candidates for further search.

In this section we fully describe the COLLAGE localized search mechanism: how it controls

search at both the global and region levels, and how it maintains overall plan consistency.

The overall goals of localized search are twofold:
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Choose an activated constraint

C2

B2

Internal fix choice

F2.2

_ Choose an activated constraint
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Choose a region with
activated constraints

R1 incarnation

ose an activated constraint

Figure 6: Search Frameworks
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• Correctness - make sure that when planning is done, all region constraints are satis-

fied by their region plan.

• Consistency - make sure that the "global" plan, consisting of all region plans, is

consistent.

Correctness is assured in COLLAGE by maintaining a valid account of constraint activation

and making sure that all activated constraints are addressed. This task is performed via the

use of region agendas. Consistency is assured in COLLAGE by making sure that region plan

modifications are propagated and appropriately integrated into other, related, plans. This

task is performed via the use of a consistency agenda.

8.1 Region Search

We begin by describing search within a region incarnation, as depicted in Figure 7. The

first step performed in any incarnation for a region R is the consistency update step. This

operation incorporates pertinent plan information from other regions into R's plan and also

performs necessary inter-region temporal closure and binding propagation operations (see

Section 8.2). After forming a consistent plan, search within R repeats a cycle of the form

"choose an activated constraint; choose a constraint bug; apply a fix." This cycle continues

until all activated constraints and their bugs are satisfied or until a search heuristic terminates

search for that incarnation (say, in order to pursue planning in another region).

In order to keep track of activated constraints, pending bugs for each constraint, con-

straint fixes that have been tried, and internal fix choices that have been tried, each incar-

nation is associated with a region agenda. The incarnation search algorithm maintains and

updates this agenda to ensure that all possible constraint/bug/fix options are explored as

necessary. In practice, this agenda is stored in a distributed fashion; constraint-activation

information is stored within a region plan and information about outstanding bugs, fixes,
and internal fix choices is associated with R's search nodes.

The constraint activation/deactivation mechanism, in particular, bears some further clar-

ification. Constraint activation information for a constraint C is stored in those local plans

that "activate" C; each local plan will contain an "activation" for each constraint activated

by the information associated directly with that local plan. Thus, LocaIPlanR can be asso-

ciated with constraint activations for any constraint in R as well as any of R's ancestors.

The underlying constraint activation mechanism in COLLAGE must utilize global informa-

tion about region structure and constraints to ensure that all appropriate constraints are

activated. Constraint deactivations are handled in much the same way. A deactivation for

a constraint C of region R is stored in LocalPlana when that constraint has been satisfied.

Given this localized storage of constraint activation and deactivation information, a con-

straint C is considered to be active relative to a particular plan depending on the activations

and deactivations inherited by that plan.
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NEW INCARNATION BEGINS

• Current plan

Consistency Update Step:

Update plan consistency
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Choose an activated constraint
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if necessary
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BI:
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Consistent current plan

C2

B2

Choose a fix

F1

Fix may activate new constraints
in this and other regions

Update remaining bugs status
Update constraint activation status

Choose an activated constraint

Figure 7: Search in a region incarnation
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Search-Incarnation (R )

CurrentPlan _-- Incorporate-Consistency-Updates(R)

While there are active constraints in CurrentPlan and

no heuristic requires termination of this incarnation

Constraints _ Active constraints in CurrentPIan

CHOICE POINT: Choose C from Constraints.

If C has not been checked since its last activation then

Bugs _-- Checkc (CurrentPlan)

Add Bugs to region agenda

AllBugs _ All bugs in region agenda

If AlIBugs is not empty then

CHOICE POINT: Choose B from AIIBugs

Fixes ,-- All possible fixes for B
CHOICE POINT: Choose Fix from Fixes

CurrentPlan *--- Fix(B, CurrentPlan)

Remove B from bugs in region agenda

If all bugs for a constraint C have been removed and

there are no activations since it was last checked,

Deactivate C in LocaIPlanR

Return CurrentPlan

Notice that backtracking through the choice points in a region incarnation will occur

when a fix fails. If all possible combinations of constraint orderings, bug orderings, and fix

orderings within an incarnation fail, the search incarnation itself will fail. This will then

cause backtracking into the global space, and ultimately, through previous incarnations in

that space.

Notice that the above algorithm allows outstanding bugs for all constraints to be tackled

in any order. That is, bug fixes for different constraints can be interleaved. The default

search heuristics in COLLAGE, however, do not allow this level of flexibility. Once COLLAGE

chooses a constraint and checks it, incarnation search will attempt to satisfy all bugs returned

by that check before it considers bugs for any other constraint.

8.2 Global Search

As we have described, search within a region incarnation is concerned with satisfying con-

straint bugs. In contrast, the global search space tries to assure that all regions with active

constraints are eventually incarnated and that all reasoning within an incarnation is per-

formed on a consistent plan. The basic scheme for maintaining consistency is fairly simple:
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Beforesearchinga region incarnation, makesurethe region's current plan is con-

sistent with respect to the current plans of all other regions. After completing a

region incarnation, take note of which local plans have been changed. Update the

consistency agenda to ensure that these local plans axe ultimately incorporated

into other relevant regions.

The simplicity of this scheme is based on the fact that region incarnations are searched in

sequenceJ 5 The notion of a current plan is also integral to this approach. The current plan

of a region R is always the plan associated with the last node visited in an R incarnation -

i.e., its most recent plan. Thus, if search backtracks out of an R incarnation, R's current

plan must be reset to its previous value - the outgoing plan of its previous incarnation, or

the initial R plan (usually empty), if no such incarnation exists.

The structure used to keep track of outstanding consistency-related information is tile

consistency agenda. It consists of a set of pairs of form (R1 R2), which indicate that the

current plan of R2 must be integrated into the current plan of R1. Note that the consistency

agenda is truly a global data structure. As a consequence, it must be updated every time

backtracking occurs in the global space (which is, in practice, rare). In contrast, the region

agenda is stored in a node-relative and/or plan-relative fashion, enabling backtracking to

occur without any explicit region-agenda modification.

Determine which regions have activated constraints.

oose a region.

: \
Figure 8: Global Search

The following algorithm describes the top level global search algorithm, as depicted in

Figure 8. Global-Search assumes that, at the start of planning, the initial plan for each region
R is associated with the initial activation status for each of R's constraints. At each node in

the global space, the set of regions with active constraints is determined as follows. Using

the current plans for each region and information in ConsistencyAgenda, the most recent

15While COLLAGE currently searches tile various regional spaces sequentially, shifting from one region

space to another, a localized search framework could also potentially serve as a natural testbed for distributed

reasoning.
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local plans for eachregionare found. From these,the most recent constraint activations can
be determined.

Global-Search

While there are regions with activated constraints

CHOICE POINT: Choose a region with active constraints, R

CurrentPlan _ Current plan for R

NewCurrentPlan *--- Search-Incarnation(R)

Update- Consistency-Agenda(R, CurrentPlan, NewCurrentPlan)

Perform any remaining consistency updates

Return final global plan, consisting of current plans for all regions.

Below are the algorithms used for updating the consistency agenda and for creating a

newly consistent plan. Note that, in contrast to the more typical consistency pair (R S)

(where S is a descendant of R), pairs of form (S R) are also used. These ensure that R's

changes to S's local plan are made aware to S itself. Update-Consistency-Agenda is also used

when search backtracks within the global search space, in order to notify all relevant regions

that a region incarnation plan has been "backed out." Finally, note that COLLAGE utilizes

a more efficient version of Incorporate-Consistency-Updates than the one presented below.

This alternative algorithm orders consistency updates so that they occur in a bottom up
fashion.

Update- Consistency-Age nda (R, OldPlan, NewPlan)

ChangedRegions ,-- All regions that have a different local plan
in NewPlan than in OldPlan.

For each S in ChangedRegions

Add (S R) to ConsistencyAgenda

Find all regions T such that descendant(T,S)
For each T

Add (T S) to ConsistencyAgenda
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Incorporate- Consistency- Updates (R )

CurrentPlan _ Consistency- Update (R)

CurrentPlan _ Temporally- Close (CurrentPlan)

CurrentPlan _-- Propagate-Bindings(CurrentPlan)

Remove all pairs (R S) from ConsistencyAgenda

Return CurrentPlan

Consistency- Update(R)

CurrentPlan _ Current plan for R

For each pair (R S) in ConsistencyAgenda

UpdatedPlans *--- Consistency- Update(S)

Integrate UpdatedPlans into CurrentPlan
Return CurrentPlan

8.3 Benefits and Pitfalls of Localized Reasoning

Consider a search space in which each node is associated with a plan and each arc is associated

with a plan-construction operation. There are at least three ways of improving planning costs
in this framework:

1. Reducing search space size, by lowering the branching factor at each node.

2. Lowering the cost of each plan-construction operation.

. Search heuristics that guide the order in which plan-construction operations are ap-

plied. This kind of improvement can reduce backtracking within the space and may

also improve solution quality.

Localization can be viewed from several perspectives. As a technique for domain rep-

resentation, it provides a means for partitioning the overall domain representation, thereby

defining the scope of domain constraints. In the plan representation dimension, localization

provides guidelines for partitioning a plan into plan fragments. The plan-construction algo-

rithms may then be applied to these smaller fragments, rather than the entire global plan.

Finally, in the control dimension, localization may be viewed as a heuristic for partitioning

the overall search space, for reducing the branching factor at each search node, and for guid-

ing how that space is searched. Thus, in terms of the potential search benefits described

above, localization can achieve all three:
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1. Sinceonly regionconstraintscanbeappliedwithin eachregionincarnation, localization
reducessearchspacesizeby limitin 9 the branching factor at each node.

2. Constraint fixes (i.e. the plan-construction operations) are applied to smaller region

plans, thereby reducing plan-construction cost.

3. By using region agendas that monitor constraint activation, only those constraints rele-

vant to changed portions of the plan are applied at each point in the reasoning process.

Moreover, search shifts between region incarnations depending on the activation status

of region constraints. Thus, localization serves as a search heuristic that controls the

order in which plan-construction operations are applied.

In order to better understand the benefits and tradeoffs of localization, we have studied

the technique both analytically and empirically. In [21], a detailed complexity analysis is

provided, as well as some empirical results for GEMPLAN. Below, we summarize the results

of these studies and provide some new empirical results for COLLAGE. As we will discuss in

Section 9, we are also embarking on a much deeper empirical study of localization, using an

enhanced version of the office building domain as our testbed.

Since the cost of localized search is very dependent on the constraints and structure of a

particular domain, the "general" complexity analysis described in [21] had to be performed

within a somewhat idealized domain scenario. The search cost of a non-localized domain was

compared with that of the same domain, partitioned into a set of m regions, RI...Rm. each

of which overlaps by some factor k with another region G (see Figure 9). In particular,/," is

the number of actions in the final plan within each region of overlap. There are a total of 77c

constraints, and they are partitioned and distributed among G and R1...Rm. The number

of regions with constraints, m + 1, provides a measure of the amount of localization in this

domain. G's final plan size, ink, provides a measure of regional overlap or sharing.

Complexity results were calculated for best-case and worst-case search, assuming that all

constraint algorithms are either constant, linear, quadratic, or exponential in cost relative

to plan size. Best-case is the cost of one path through the search space (no backtracking),

and worst-case is the cost of the entire space. Table 1 provides the results of this analysis.

The term s is the size of the final plan. The term n I is the number of available fixes for each
constraint. The number of incarnations was assumed to be _ for G and _ for

n¢ rrln¢

R1...Rm. Finally, C is the cost of maintaining consistency, which is assumed to be O(rn2/,').

These results showed that, for this highly idealized scenario, localized search is in most

cases much better than non-localized search. The only exceptions are constant-complexity

best-case search (when there is no reduction in the amount of the space searched nor in plan-

construction cost) or when the cost of consistency maintenance overshadows other costs.

The amount by which localized search wins over non-localized search is proportional to

m (the degree of localization), but inversely proportional to mk (the amount of overlap).

Thus, increased localization is always worthwhile, ezcept for resulting increased consistency
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Figure 9: Non-Localized and Localized Domains
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maintenance costs• The gains of localized search become exponential as the complexity of

the constraint algorithms increases and the amount of the space actually searched increases.

Empirical tests have been carried out with both GEMPLAN and COLLAGE that support

these analytical results. The graph in Figure 10 depicts results from a COLLAGE test suite,

using three different localizations for the office building domain: a non-localized partitioning,

a localized partitioning, and a partitioning with a more moderate level of localization. The

graph provides results for an office building ranging in size from one to eleven floors, with

an identical pod structure (floor plan) on each floor.
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Figure 10' Office Building Test Results

Since there is no backtracking in this domain, most of the savings attained by the localized

versions of the domain are attributable to a reduction in plan-construction cost and good

search heuristics• Even though the plan-construction costs are fairly low in this domain

(linear or polynomial for all constraints), the results show that localization can provide

impressive benefits, except for the added expense of consistency maintenance in more highly

partitioned domains. In a previous study with GEMPLAN on a house construction domain

[21], empirical results also showed that the cost of consistency maintenance becomes less

important as plan size and search space size increases.
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Finally, Figure 11depictsplanning costsfor SIPE and COLLAGE on the same test suite

of office buildings (using the best COLLAGE localization). The run times for SIPE are

taken from [13]. Although these results are admittedly for an entirely different planner

implemented on different hardware, it is clear that the derivative of the COLLAGE cur\'e

increases much more slowly than that of the SIPE curve. Most of this result is attributable

to the use of localized search; another factor may be the relative efficiency of the COLLAGE

plan construction algorithms.

8.4 Localization vs. Abstraction

Both localization and state-abstraction [3, 14, 16] may be viewed as heuristics for reducing

planning search cost. Abstraction techniques explicitly break the problem-solving process

up into "abstraction levels." The planning process starts by creating a plan at the highest

level of abstraction. This high-level plan then serves as a starting point for planning at the

next level of detail, with this process continuing until a plan at the lowest level of detail

is formed. At each level, more information is added into the problem definition ("visible"

state conditions and actions) to create a more complex planning problem. Since the use of

abstraction levels inherently controls the order in which pieces of the problem are tackled, it

can be viewed as a search heuristic. In earlier stages of the reasoning process, only "higher"

level plan-construction operations, which involve high-level actions or conditions, are applied.

This set is expanded as the problem and domain definition is expanded.

Ahhough abstraction limits the set of applicable plan-construction operations at higher-

level stages of the search process, a reduction of the number of applicable plan-construction

operations (and a reduction of the application scope of these operations) is not guaranteed

once a domain is fully expanded. As a result, planning at the lowest level of detail is still

"'global." To cope with this problem, abstraction-derivation techniques have been developed

to guarantee properties such as monotonicity [15]. A monotonic hierarchy is guaranteed to

be free from abstraction-level interactions, thereby guaranteeing a reduction in the search-

space branching factor at each level, and potentially, the scope of each plan-construction

operation as well.

In contrast to abstraction, localization divides a planning problem according to the in-

herent scope of its constraints. In practice, a localization structure is influenced by a broad

set of criteria, not just "abstractness." Thus, localization can be viewed as a way of creating

and sinmltaneously utilizing several different "kinds" of abstraction levels.

Most importantly, however, localization allows for domain regions that overlap and in-

teract. Researchers using abstraction hierarchies have found that, in realistic domains, it is

difficult to attain a monotonic abstraction-level partitioning. Because real-world domains

ahnost always manifest natural forms of interaction, the quest for monotonicity is thwarted

by a resulting collapse in the abstraction hierarchy. In contrast, localization embraces the

notion that real-world domains cannot be neatly decomposed into independent regions. The

localized search technique explicitly provides methods for coping with this regional interac-
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tion, shifting searchfrom region to region, rather than requiring that the planning process
be neatly partitioned and monotonic. Thus, despiteregion interaction, all three kinds of
searchbenefits can be attained in a localizedsearchframework.

9 Current Work

Our current research with COLLAGE is progressing on several fronts. In addition to extending

the constraint library in order to handle our two application domains, we are also enhancing

the COLLAGE architecture in several ways. This section discusses three of the current foci

of the COLLAGE project: "flexi-time" constraint activation and satisfaction, user integration

into the planning process, and continued study of localized search.

9.1 Flexi-Time Constraints

Because of the coordination-intensive nature of our target domains, it is important to do

most planning in advance of execution. For instance, the general contractor at a building

site must plan most of the construction process in advance - a large structure cannot be built

"reactively." However, complex, real-world domains also require run-time plan modification.

This kind of reasoning can take at least two forms: (1) Some constraints cannot usefulh" be

applied until run-time. Such constraints should be deferred until they are truly applicable

or satisfiable. A typical example is a run-time dispatch constraint that controls access to

resources. (2) Unanticipated situations resulting from run-time errors, user intervention.

an incomplete domain theory, or environmental factors may trigger the need to make plan

repairs.

In order to meet these requirements, we are currently working on extending the COL-

LAGE architecture to blend pre-execution search-based planning with more dynamic forms

of reasoning. 16 We term this fusion of pre-planning with run-time reasoning flezi-time con-

straint satisfaction. The intuition is that a constraint should, in principle, be applicable at

any time relative to execution. During pre-planning, constraints are triggered primarily by

plan modifications made by the planner. However, constraints could also be triggered and

applied in response to the run-time environment or the user. For example, the environment

may cause unexpected modifications to the plan, or the user may decide to alter the domain

and problem specification. The incorporation of flexi-time constraint satisfaction will also

enable COLLAGE to emulate reactive planning architectures. For example, given decompose

constraints that are reactively applied, along with an enhanced dynamic knowledge base.

COLLAGE could emulate systems such as PRS or RAPS.

1%ince our target domain class is not highly dynamic, we are not focusing on issues such as time pressures

in run-time reasoning. Instead, our goal is to maintain plan correctness while providing flexibility in plan
construction and repair.
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However,backtracking in aplan-spacesearchframework (wherethe order in which actions
are added into the plan has no relationship with the order in which they are executed)
becomesproblematic once plan-executionhas begun. How canone backtrack over a node
if portions of the plan associatedwith that node have already beenexecuted? We believe
that the best solution is to conduct run-time planning much the sameway a human would.
Onceexecutionhas begun,a plan should be "patched." Information gleanedfrom a record
of the prior searchspacemay be useful, but backtracking into the prior searchspaceis not.
A sinfilar tactic is taken in recentwork on plan reuseand modification [12].

Our current strategy for flexi-time reasoningin COLLAGEis to createa "reformed" search
framework eachtime plan modifications aremade at run-time. Each "reformation" may be
viewedas a new,global searchframework. It beginswith an initial nodethat encompasses
new user directives (in the form of modifications to the plan or domain description) and
other externally-motivated plan modifications.

Oncereformed,constraint-satisfactionsearchmay proceedmuch asduring pre-planning
search,tackling constraintsthat may havebeenactivatedin responseto reformation changes.
Other constraints that must be tackled are those that may have becomeviolated due to
the reformation process,even though they were not explicitly activated by it. Towards
this end, we will be extending the COLLAGE plan structure to incorporate an embedded

"justification" for each plan action, relation, and binding. This justification structure will

serve as a framework for tracking and correcting constraint violations. Search through a

sequence of "reformations" must obey the following rules: (1) it cannot backtrack over

nodes associated with portions of the plan that have already been executed; and (2) it

cannot backtrack to previous reformations.

9.2 User-Planner Integration

In our experience with coordination-intensive domains, we have come to recognize the im-

portance of user-planner integration. If users have deep knowledge of a domain and a vested

interest in the form of the final plan, they will not willingly utilize a planner unless it allows

for their direct input into the planning process. Unfortunately, the planning community has

largely ignored this problem. Our attempt to deal with user-planner integration has resulted

in the development of COLLIE, the Collage Interface Environment. A COLLIE user can

visualize the growing plan, inspect features of each action, relation, and binding, and under-

stand the relationship between plan structure and domain constraints. Tools are provided

for viewing a graphical representation of the domain localization structure, visualizing the

localized search process, and editing the domain description and knowledge base. Tracing

and stepping options are provided for monitoring planning and execution. Ultimately. we

will allow the user to modify the plan itself and to interact more directly with the constraint

activation and search control mechanism.
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9.3 Localization Studies

Another goal of the COLLAGE project is to deepen our understanding of localized search. \Ve

are embarking upon an empirical study to test a variety of search strategies over a suite of

problems from tile office building domain. The office building problems will vary in several

dimensions:

• The amount of backtracking required. This will be varied by using resource limitations.

• Constraint algorithm difficulty, varied by using alternative constraint forms.

• Domain localization structure. In particular, we are developing an automatic localiza-

tion generator, LOC, described below.

• Office building structure and size. Our encoding of office buildings in terms of "pods"

allows us to easily and automatically generate new building descriptions.

Using the region agenda mechanism and heuristics that can be associated with choice nodes.

we will also be experimenting with alternative search strategies. Another interesting test will

be to vary the amount of temporal closure and consistency maintenance that is performed.

For example, the default temporal closure strategy in COLLAGE is to perform closure each

time a temporal relation is added. An alternative, more relaxed, approach would be to

perform closure only after a fix is completed or at the end of each incarnation.

In order to systematically generate possible localizations for a domain description, we

have developed a COLLAGE localization generator, LOC, that searches through a "local-

ization space." Each node in this space is associated with a localization, and each arc is
associated with a localization "transform" that transforms one localization into another.

Currently, LOC generates new localizations by merging regions together - i.e. by decreas-

ing the level of partitioning for a domain. The root node of the LOC space is associated

with a highly partitioned localization: each action type is associated with its own region and

each constraint is associated with. a region that includes relevant "action-type" subregions.

Transforms either collapse a set of regions together or restructure the region topology. Eight

distinct transforms that have been identified and implemented.

The overall goal of LOC is to remove regional overlap while still retaining as many

localization benefits as possible. Since the current transforms only increase constraint scope.

they can only affect search cost; they do not affect plan correctness. In the future, we also

plan to incorporate transforms that split a region up into multiple regions. For instance,

empirical testing could be used to determine the true scope of specific constraints and thereby

provide information for further partitioning of the domain region structure. As a by-product

of our work with LOC and the office building domain test suite, we also hope to come up

with a localization learning approach that automaticallv discovers domain-dependent and

domain-independent localization heuristics.
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10 Conclusion

This paper has presented COLLAGE, a planner that utilizes a diverse suite of action-based

plan construction methods within a localized search framework. This unique approach to

domain representation and planning was motivated by the requirements of coordination-

intensive domains. Expressive and natural to use, COLLAGE's action-based constraints pro-

vide a substrate for cost-effective planning. In our experience, with realistic domains, the

action-based approach has obviated the need for planning methods based on the modal truth

criterion. Moreover, in both analytical and empirical studies, COLLAGE'S use of localized

search has yielded significant planning cost reduction, while still allowing for subproblem

interactions. This paper has also tried to demonstrate how a planning "ontology" based

o11 a six-dimensional view of the planning process can serve as an excellent framework for

expanding our view of what planning is, and for understanding and comparing the myriad

planning techniques that have been developed.
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APPENDIX

The following provides the region type definitions and region instances for the office
building domain (for the localization that displayed the best results in our empirical studies).
This domain description is followed by a fact data base for a particular prolflem instance -
an L-shaped office building with a basement and four finished floors.

/
(pod 2 {xl yl} {x2 y2} Ix3 5,3} {x4 y4})

(pod 1 {xl yl} {x2 y2} {x3 y3} {x4 y4})

(pod 0 {xl yl} {x2 y2} {x3 y3} {x4 y4})
[x2 y2}

' [x4 y4}

As described earlier, each office building is described in terms of a set of pods. Eacti
pod may be viewed as a cube-like building-block (see above). A pod definition contains a
floor number and four coordinate points. The presence of a particular pod in the fact data
base will result in the addition of four columns (for the specified floor, at the four specified

coordinates), four walls (on that floor, between the four coordinates), four beams connecting
the tops of tile four columns, and a deck laid on top of the beams. Pods are "stacked" one
on top of the other, with the deck of the top pod forming the "roof" and the beams of the
bottom bod forming the foundational piers.

Region Type Definitions

;; BUILD BEAMS

(def-region-type all-beams-type

:action-type (build-beam floor coord coord)

:constraint

(action

:condition ((fact (pod ?f ?cl ?c2 ?c3 ?c4)))
:actions ((build-beam ?f ?cl 7c2)

(build-beam ?f ?c3 ?c4)

(build-beam ?f ?cl 7c3)

(build-beam ?f 7c2 ?c4))))

67



;; BUILD COLUMNS

(def-region-type all-columns-type

:action-type (build-colunm floor coord)

:constraint

(action

:condition ((fact (pod ?f ?cl ?c2 ?c3 ?c4)))
:actions ((build-colunm ?f ?cl)

(build-column ?f ?c2)

(build-colunm ?f ?c3)

(build-column ?f ?c4))))

;; BUILD DECKS

(def-region-type all-decks-type

:action-type (build-deck floor coord coord coord coord)

:constraint

(action

:condition ((fact (pod ?f 7cl ?c2 7c3 ?c4)))

:actions ((build-deck ?f ?cl 7c2 ?c3 ?c4))))

;; BUILD WALLS -- none at the basement level

(def-region-type all-walls-type

:action-type (build-wall floor coord coord)

:constraint

(action

:condition ((fact (pod ?f ?cl ?c2 ?c3 ?c4))

(test (> ?f 0)))
:actions ((build-wall ?f ?cl ?c2)

(build-wall ?f ?c3 7c4)

(build-wall ?f ?ci ?c3)

(build-wall 7f ?c2 ?c4))))

;; BASEMENT AND FOUNDATION

(def-region-type groundlevel-type

:action-type (build-footing coord)

:constraint

(action

:condition ((fact (pod 0 7ci 7c2 7c3 7c4)))

:actions ((build-footing 7cl)

(build-footing ?c2)

(build-footing ?c3)

(build-footing 7c4)))

:constraint

(all-match-precede

:actions ((build-footing ?c) (build-colunm 0 ?c))))
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;;; CONSTKAINTS BETWEEN BASIC BUILDING COMPONENTS

(def-region-type column-beam-nexus-type
:constraint

(tempbefore
:actions ((build-column ?f ?cl) (build-beam ?f ?cl 7c2)))

:constraint

(tempbefore
:actions ((build-column ?f ?c2) (build-beam ?f ?cl ?c2))))

(def-region-type beam-deck-nexus-type
:constraint

(tempbefore
:actions ((build-beam ?f Tel 7c2) (build-deck ?f ?cl 7c2 7c3 7c4)))

:constraint

(tempbefore
:actions ((build-beam ?f ?c3 ?c4) (build-deck ?f ?cl 7c2 ?c3 ?c4)))

:constraint

(tempbefore
:actions ((build-beam ?f ?cl ?c3) (build-deck ?f ?cl ?c2 ?c3 ?c4)))

:constraint

(tempbefore
:actions ((build-beam ?f ?c2 ?c4) (build-deck ?f ?cl ?c2 ?c3 ?c4))))

(def-region-type deck-column-nexus-type
:constraint

(tempafter
:condition ((action (build-column ?f ?cl))

(test (> ?f 0))
(make (?belowf (- ?f I))))

:actions ((build-deck ?belowf ?cl 7c2 7c3 ?c4) (build-column ?f ?cl)))

:constraint

(tempafter
:condition ((action (build-column ?f ?c2))

(test (> ?f 0))
(make (?belowf,(- ?f I))))

:actions ((build-deck ?belowf ?cl ?c2 ?c3 ?c4) (build-column ?f 7c2)))

:constraint

(tempafter

:condition ((action (build-column ?f ?c3))

(test (> ?f 0))

(make (?belowf (- ?f I))))

:actions ((build-deck ?belowf ?el ?c2 7c3 ?c4) (build-column ?f ?c3)))
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:constraint

(tempafter

:condition ((action (build-column ?f ?c4))

(test (> ?f 0))

(make (?belowf (- 7f I)))I

:actions ((build-deck ?belowf ?cl ?c2 7c3 ?c4) (build-column ?f 7c4))))

(def-region-type beam-wall-nexus-type
:constraint

(tempbefore

:actions ((build-beam ?f ?cl ?c2) (build-wall ?f ?cl ?c2))))

;;; FINISHING A FLOOR LEVEL

(def-region-type all-floors-type

:action-type (do-finish-floor floor)

:action-type (dummy-first-finish-floor floor)

:action-type (dummy-last-finish-floor floor)

:constraint

(action

:condition ((fact (floor ?f))

(test (> ?f 01)1
:actions ((do-finish-floor ?f)))

:constraint

(decompose

:action ((do-finish-floor ?f))

:decompositions
((:subactions

(#1=(dummy-first-finish-floor ?f)

#2=(do-partitioning ?f)

#3=(do-ceiling ?f)

#4=(do-flooring ?f)

#5=(dummy-last-finish-floor ?f))
:first-subaction #I#

:last-subaction #5#

:relations ((:before #i# #2#)

(:before #I# #3#)

(:before #I# #4#)

(:before #2# #5#)

(:before #3# #5#)

(:before #4# #5#)))))

:constraint

(all-match-precede

:actions ((do-drywall ?f) (do-ceiling-grid ?f)))

:constraint

(all-match-precede

:actions ((suspended-ceiling ?f) (finish-flooring ?f)))
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:constraint

(all-match-precede

:actions ((painting ?f) (finish-flooring ?f)))

:constraint

(all-match-precede
:actions ((build-deck ?f ?el ?c2 ?c3 ?c4) (do-finish-floor ?f)))

:constraint

(all-match-precede
:condition ((action (build-wall ?f ?cl ?c2))

(fact (external-wall ?f ?cl ?c2)))

:actions ((build-wall ?f ?cl ?c2) (do-finish-floor ?f))))

;;; PARTITIONING A FLOOR LEVEL

(def-region-type partitioning-type

:action-type (do-partitioning floor)

:action-type (m-and-e-wall-services floor)

:action-type (drywall-studs floor)

:action-type (taping floor)

:action-type (painting floor)

:action-type (wall-fixtures floor)

:action-type (door-frames floor)

:action-type (doors floor)

:action-type (window-frames floor)

:action-type (glazing floor)

:action-type (do-drywall floor)

:action-type (start-drywall floor)

:action-type (finish-drywall floor)

:constraint

(decompose

:action ((do-partitioning ?f))

:decompositions
((:subactions (#1=(m-and-e-wall-services ?f)

#2=(drywall-studs ?f)

#3=(do-drywall ?f)

#4=(taping ?f)

#5=(painting ?f)
#6=(wall-fixtures ?f)

#7=(door-frames ?f)

#8=(doors ?f)

#9=(window-frames ?f)

#10=(glazing ?f))

:first-events (#I# #2# #7# #9#)

:last-events (#6# #8# #10#)

:relations ((:before #I# #4#)

(:before #2# #3#)

(:before #2# #7#)

(:before #3# #4#)

(:before #4# #5#)

(:before #5# #6#)

(:before #7# #8#)

(:before #9# #i0#)))))
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:constraint

(decompose

:action ((do-drywall ?f_floor))

:decompositions

((:subactions (#1=(start-drywall ?f)

#2=(finish-drywall ?f))
:first-event #1#

:last-event #2#

:relations ((:before #I# #2#)))))

:constraint

(tempbefore

:actions ((m-and-e-wall-services ?f) (finish-drywall ?f))))

;; CEILING FOR A FLOOR LEVEL

(def-region-type ceiling-type

:action-type (do-ceiling floor)

:action-type (m-and-e-ceiling-services floor)

:action-type (suspended-ceiling floor)

:action-type (ceiling-fixtures floor)

:action-type (do-ceiling-grid floor)

:action-type (start-ceiling-grid floor)

:action-type (finish-ceiling-grid floor)

:constraint

(decompose

:action ((do-ceiling ?f))

:decompositions

((:subactions (#1=(m-and-e-ceiling-services ?f)

#2=(do-ceiling-grid ?f)

#3=(suspended-ceiling ?f)

#4=(ceiling-fixtures ?f))
:first-events (#1# #2#)
:last-event #4#

:relations ((:before #I# #3#)

(:before #2# #3#)

(:before #3# #4#)))))

:constraint

(decompose

:action ((do-ceiling-grid ?f))

:decompositions

((:subactions (#1=(start-ceiling-grid ?f)

#2=(finish-ceiling-grid ?f))
:first-event #I#

:last-event #2#

:relations ((:before #i# #2#)))))

:constraint

(tempbefore

:actions ((m-and-e-ceiling-services ?f)

(finish-ceiling-grid ?f))))
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;; FLOORING A FLOOR LEVEL

(def-region-type flooring-type

:action-type (do-flooring floor)

:action-type (start-flooring floor)
:action-type (lay-carpet floor)

:action-type (finish-flooring floor)

:constraint

(decompose

:action ((do-flooring ?f))

:decompositions

((:subactions (#1=(start-flooring ?f)
#2=(lay-carpet ?f)

#3=(finish-flooring ?f))
:first-event #I#
:last-event #3#

:relations ((:before #I# #2#)

(:before #2# #3#))))))

Region Instances

(defregion (all-beams all-beams-type))

(defregion (all-columns all-columns-type))

(defregion (all-decks all-decks-type))

(defregion (all-walls all-walls-type))

(defregion (groundlevel groundlevel-type)
:subregion all-columns)

(defregion (column-beam-nexus column-beam-nexus-type)

:subregion all-beams
:subregion all-columns)

(defregion (beam-deck-nexus beam-deck-nexus-type)

:subregion all-beams
:subregion all-decks)

(defregion (beam-wall-nexus beam-wall-nexus-type)
:subregion all-beams

:subregion all-walls)

(defregion (deck-column-nexus deck-column-nexus-type)

:subregion all-decks

:subregion all-columns)
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(defregion (all-floors all-floors-type)

:subregion all-decks

:subregion all-walls

:subregion (:generate (partitioning partitioning-type)

:limit :infinity)

:subregion (:generate (ceiling ceiling-type)

:limit :infinity)

:subregion (:generate (flooring flooring-type)

:limit :infinity))

Fact base for office building with a basement and four finished floors:

(deffact (floor 0))

(deffact (floor 1))

(deffact (floor 2))

(deffact (floor 3))

(deffact (floor 4))

(deffact (pod 0 {0 I} {I 1} {0 O} {I 0}))

(deffact (pod 0 {i I} {2 I} {I O} {2 0}))

(deffact (pod 0 {0 2} {i 2} {0 I} {I I}))

(deffact (pod 0 {0 3} {i 3} {0 2} {1 2}))

(deffact (pod 1 {0 1} {1 1} {0 O} {I 0}))

(deffact (pod 1 {1 i} {2 1} {1 O} {2 0}))

(deffact (pod 1 {0 2} {I 2} {0 1} {1 1}))

(deffact (pod 1 {0 3} {I 3} {0 2} {1 2}))

(deffact (pod 2 {0 I} {i 1} {0 O} {1 0}))

(deffact (pod 2 {1 1} {2 I} {I O} {2 0}))

(deffact (pod 2 {0 2} {I 2} {0 I} {I i}))

(deffact (pod 2 {0 3} {1 3} {0 2} {1 2}))

(deffact (pod 3 {0 I} {1 1} {0 O} {1 0}))

(deffact (pod 3 {1 I} {2 I} {1 O} {2 0}))

(deffact (pod 3 {0 2} {I 2} {0 1} {1 1}))

(deffact (pod 3 {0 3} {I 3} {0 2} {i 2}))

(deffact (pod 4 {0 1} {I I} {0 O} {1 0}))

(deffact (pod 4 {1 1} {2 1} {1 O} {2 0}))

(deffact (pod 4 {0 2} {I 2} {0 I} {1 I}))

(deffact (pod 4 {0 3} {1 3} {0 2} {1 2}))

(deffact (external-wall 1 {0 i} {0 0}))

(deffact (external-wall 1 {0 O} {1 0}))

(deffact (external-wall 1 {I O} {2 0}))

(deffact (external-wall 1 {2 I} {2 0}))

(deffact (external-wall I {I I} {2 I}))

(deffact (external-wall I {0 2} {0 I}))

(deffact (external-wall 1 {I 2} {i i}))

(deffact (external-wall I {0 3} {0 2}))

(deffact (external-wall 1 {i 3} {i 2}))

(deffact (external-wall 1 {0 3} {i 3}))
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(deffact (external-wall 2 {0 1} {0 0}))

(deffact (external-wall 2 {0 O} {1 0}))

(deffact (external-wall 2 {I O} {2 0}))

(deffact (external-wall 2 {2 I} {2 0}))

(deffact (external-wall 2 {1 i} {2 I}))

(deffact (external-wall 2 {0 2} {0 i}))

(deffact (external-wall 2 {I 2} {I I}))

(deffact (external-wall 2 {0 3} {0 2}))

(deffact (external-wall 2 {i 3} {1 2}))

(deffact (external-wall 2 {0 3} {i 3}))

(deffact (external-wall 3 {0 I} {0 0}))

(deffact (external-wall 3 {0 O} {i 0}))

(deffact (external-wall 3 {1 O} {2 0}))

(deffact (external-wall 3 {2 I} {2 0}))

(deffact (external-wall 3 {1 I} {2 I}))

(deffact (external-wall 3 {0 2} {0 1}))

(deffact (external-wall 3 {I 2} {1 1}))

(deffact (external-wall 3 {0 3} {0 2}))

(deffact (external-wall 3 {I 3} {I 2}))

(deffact (external-wall 3 {0 3} {I 3}))

(deffact (external-wall 4 {0 I} {0 0}))

(deffact (external-wall 4 {0 O} {I 0}))

(deffact (external-wall 4 {i O} {2 0}))

(deffact (external-wall 4 {2 1} {2 0}))

(deffact (external-wall 4 {I i} {2 I}))

(deffact (external-wall 4 {0 2} {0 I}))

(deffact (external-wall 4 {I 2} {I 1}))

(deffact (external-wall 4 {0 3} {0 2}))

(deffact (external-wall 4 {I 3} {1 2}))

(deffact (external-wall 4 {0 3} {1 3}))
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